AMD To Power Samsung’s Digital Media
AMD’s Embedded R-Series accelerated processing unit, previously codenamed “Bald Eagle,” is powering Samsung’s latest set-back-box digital media players.
Bald Eagle was designed for high performance at low power with broad connectivity but mostly for digital signage.
It seems that new Samsung SBB-B64DV4 is intended for demanding signage applications that transform Samsung SMART Signage Displays into digital tools for a wide range of business needs.
The chipmaker claimed that by using its Embedded R-Series APUs, Samsung SBB media players for digital signage can manage HD graphics performance and support multivideo stream capabilities up to two displays, in a power efficient and ultra-compact form factor.
Scott Aylor, corporate vice president and general manager, AMD Embedded Solutions said that digital signage is a key vertical for the AMD Embedded business.
“The AMD Embedded R-Series APU enables leading digital signage providers to harness high levels of compute and graphics performance within a low-power design envelope. AMD Embedded Solutions help designers at Samsung achieve aggressive form factor goals and drive down system costs while providing the rich multimedia their digital signage customers’ demand,” he said.
The AMD Embedded RX-425BB APU combines an x86 CPU with an integrated, discrete-class AMD Radeon R6 graphics processing unit in a low-power configuration to minimize heat dissipation constraints and meet energy efficiency requirements.
The processor uses AMD’s latest Graphics Core Next architecture, created for advanced graphics applications and parallel processing capabilities.
AMD Changes Kaveri
Since AMD officially launched its 4th generation A-Series Kaveri APUs and lifted the NDA veil from all press materials, we noticed that it has started to use a new term to define the structure of its new Kaveri APUs. As we reported last week, AMD is now talking about Compute Cores, which practically puts CPU and GPU cores on an equal footing, suggesting that there should not be any difference between them and that some tasks, previously limited to the CPU, can be done by the GPU as well.
If you take a look at the official AMD slide below which details the three new Kaveri APUs, the A10-7850K, A10-7700K and the A8-7600, you will notice that AMD lists the flagship as the APU with 12 Compute Cores or simply four CPU and eight GPU cores. Since the Kaveri APU is actually the first APU with HSA (Heterogeneous System Architecture) support, with hUMA, or equal memory access by both CPU and the GPU, heterogeneous queuing, which allows the GPU and CPU to have equal flexibility to create/dispatch work and an ability to talk about APU GFLOPS, or combined compute power of the entire APU, it makes sense for AMD to also talk about Compute Cores.
Of course, there are still some application specific tasks where the CPU or the GPU are much better, but, according to AMD, Kaveri is the first true APU, where the GPU is not just for gaming, it can actually do much more.
AMD Senior Manager Sasa Marinkovic, Technology lead for the Client Business Unit, said: “At AMD, we recognize that our customers often think of processors (CPUs) and graphics cards (GPUs) in terms of the number of cores that each product has. We have established a definition of the term “Compute Core” so that we are taking a consistent and transparent approach to describing the number of cores in our HSA-enabled APUs. A Compute Core can be either a CPU core or GPU core i.e. Kaveri can have up to 12 Compute Cores (4 CPU and 8 GPU).”
Although it does sound like a marketing gimmick, but actually is not due to HSA, it will definitely mark a new way for AMD to market/sell its APUs and it will definitely simplify the shopping experience for many casual buyers, more Compute Cores, more performance.