Will The Chip Industry Take Fall?
Microchip Technology has managed to scare Wall Street by warning of an industry downturn. This follows rumours that a number of US semiconductor makers with global operations are reducing demand for chips in regions ranging from Asia to Europe.
Microchip Chief Executive Steve Sanghi warned that the correction will spread more broadly across the industry in the near future. Microchip expects to report sales of $546.2 million for its fiscal second quarter ending in September. The company had earlier forecast revenue in a range of $560 million to $575.9 million. Semiconductor companies’ shares are volatile at the best of times and news like this is the sort of thing that investors do not want to hear.
Trading in Intel, whiich is due to report third quarter results tomorrow, was 2.6 times the usual volume. Micron, which makes dynamic random access memory, or DRAM, was the third-most traded name in the options market. All this seems to suggest that the market is a bit spooked and much will depend on what Chipzilla tells the world tomorrow as to whether it goes into a nosedive.
Is AMD’s FreeSync Coming In 2015?
Last week in San Francisco we spent some time with Richard Huddy, AMD’s Chief gaming scientist to get a glimpse what is going on in the world of AMD graphics. Of course we touched on Mantle, AMD’s future in graphics and FreeSync, the company’s alternative to Nvidia G-Sync.
Now a week later AMD is ready to announce that MStar, Novatek and Realtek scaler manufactures are getting ready with DisplayPort Adaptive-Sync and AMD’s Project FreeSync. They should be done by end of the year with monitors shipping in Q1 2015.
FreeSync will prevent frame tearing as the graphic card often pushes more (or fewer) frames than the monitor can draw and this lack of synchronisation creates quite annoying frame tears.
FreeSync will allow Radeon gamers to synchronize display refresh rates and GPU frame rates to enable tearing and stutter-free gaming along with low input latency. We still do not have the specs or names of the new monitors, but we can confirm that they will use robust DisplayPort receivers from MStar, Novatek and Realtek in 144Hz panels with QHD 2560×1440 and UHD 3840×2160 panels up to 60 Hz.
It took Nvidia quite some time to get G-Sync monitors off the ground and we expect to see the first 4K G-Sync monitors shipping shortly, while QHD 2560×1440 ones have been available for a few months. Since these are gaming monitors with a 144Hz refresh rate they don’t come cheap, but they are nice to look at and should accompany a high end graphic card such as Geforce GTX 980 or a few of them.
Radeon lovers will get FreeSync, but monitors will take a bit more time since AMD promises Project FreeSync-ready monitors through a media review program in 1Q 15 and doesn’t actually tells us much about retail / etail availability.
Intel Sampling Xeon D 14nm
Intel has announced that it is sampling its Xeon D 14nm processor family, a system on chip (SoC) optimized to deliver Intel Xeon processor performance for hyperscale workloads.
Announcing the news on stage during a keynote at IDF in San Francisco, Intel SVP and GM of the Data Centre Group, Diane Bryant, said that the Intel Xeon processor D, which initially was announced in June, will be based on 14nm process technology and be aimed at mid-range communications.
“We’re pleased to announce that we’re sampling the third generation of the high density [data center system on a chip] product line, but this one is actually based on the Xeon processor, called Xeon D,” Bryant announced. “It’s 14nm and the power levels go down to as low as 15 Watts, so very high density and high performance.”
Intel believes that its Xeon D will serve the needs of high density, optimized servers as that market develops, and for networking it will serve mid-range routers as well as other network appliances, while it will also serve entry and mid-range storage. So, Intel claimed, you will get all of the benefits of Xeon-class reliability and performance, but you will also get a very small footprint and high integration of SoC capability.
This first generation Xeon D chip will also showcase high levels of I/O integrations, including 10Gb Ethernet, and will scale Intel Xeon processor performance, features and reliability to lower power design points, according to Intel.
The Intel Xeon processor D product family will also include data centre processor features such as error correcting code (ECC).
“With high levels of I/O integration and energy efficiency, we expect the Intel Xeon processor D product family to deliver very competitive TCO to our customers,” Bryant said. “The Intel Xeon processor D product family will also be targeted toward hyperscale storage for cloud and mid-range communications market.”
Bryant said that the product is not yet available, but it is being sampled, and the firm will release more details later this year.
This announcement comes just days after Intel launched its Xeon E5 v2 processor family for servers and workstations.
FreeSync Only For New AMD Chips
AMD has explained that its new FreeSync technology will only work in new silicon.
FreeSync is AMD’s initiative to enable variable-refresh display technology for smoother in-game animation and was supposed to give Nvidia’s G-Sync technology a good kicking.
G-Sync has already resulted in some top production gaming monitors like the Asus ROG Swift PG278Q.
However AMD said that the only the newest GPU silicon from AMD will support FreeSync displays. Specifically, the Hawaii GPU that drives the Radeon R9 290 and 290X will be compatible with FreeSync monitors, as will the Tonga GPU in the Radeon R9 285.
The Bonaire chip that powers the Radeon R7 260X and HD 7790 cards could support FreeSync, but that is not certain yet.
Now that would be OK if the current Radeon lineup is populated by a mix of newer and older GPU technology. What AMD is saying is that there are some brand-new graphics cards selling today that will not support FreeSync monitors when they arrive.
The list of products that won’t work with FreeSync includes anything based on the older revision of the GCN architecture used in chips like Tahiti and Pitcairn.
So if you have splashed out on the the Radeon R9 280, 280X, 270, and 270X hoping that it will be FreeSync-capable you will be out of luck. Nor will any older Radeons in the HD 7000 and 8000 series.
Nvidia’s G-Sync works with GeForce graphics cards based on the Kepler architecture, which include a broad swath of current and past products dating back to the GeForce GTX 600 series.
Vendors Testing New Xeon Processors
Comments Off on Vendors Testing New Xeon Processors
Intel is cooking up a hot batch of Xeon processors for servers and workstations, and system vendors have already designed systems that are ready and raring to go as soon as the chips become available.
Boston is one of the companies doing just that, and we know this because it gave us an exclusive peek into its labs to show off what these upgraded systems will look like. While we can’t share any details about the new chips involved yet, we can preview the systems they will appear in, which are awaiting shipment as soon as Intel gives the nod.
Based on chassis designs from Supermicro, with which Boston has a close relationship, the systems comprise custom-built solutions for specific user requirements.
On the workstation side, Boston is readying a mid-range and a high-end system with the new Intel Xeon chips, both based on two-socket Xeon E5-2600v3 rather than the single socket E5-1600v3 versions.
There’s also the mid-range Venom 2301-12T, which comes in a mid-tower chassis and ships with an Nvidia Quadro K4000 card for graphics acceleration. It comes with 64GB of memory and a 240GB SSD as a boot device, plus two 1TB Sata drives configured as a Raid array for data storage.
For extra performance, Boston has also prepared the Venom 2401-12T, which will ship with faster Xeon processors, 128GB of memory and an Nvidia Quadro K6000 graphics card. This also has a 240GB SSD as a boot drive, with two 2TB drives configured as a Raid array for data storage.
Interestingly, Intel’s new Xeon E5-2600v3 processors are designed to work with 2133MHz DDR4 memory instead of the more usual DDR3 RAM, and as you can see in the picture below, DDR4 DIMM modules have slightly longer connectors towards the middle.
For servers, Boston has prepared a 1U rack-mount “pizza box” system, the Boston Value 360p. This is a two-socket server with twin 10Gbps Ethernet ports, support for 64GB of memory and 12Gbps SAS Raid. It can also be configured with NVM Express (NVMe) SSDs connected to the PCI Express bus rather than a standard drive interface.
Boston also previewed a multi-node rack server, the Quattro 12128-6, which is made up of four separate two-socket servers inside a 2U chassis. Each node has up to 64GB of memory, with 12Gbps SAS Raid storage plus a pair of 400GB SSDs.
ARM Launches Juno
ARM has announced two programs to assist Android’s ascent into the 64-bit architecture market.
The first of those is Linaro, a port of the Android Open Source Project to the 64-bit ARMv8-A architecture. ARM said the port was done on a development board codenamed “Juno”, which is the second initiative to help Android reach the 64-bit market.
The Juno hardware development platform includes a system on chip (SoC) powered by a quad-core ARM Cortex-A53 CPU and dual-core ARM Cortex-A57 CPU in an ARM big.little processing configuration.
Juno is said to be an “open, vendor neutral ARMv8 development platform” that will also feature an ARM Mali-T624 graphics processor.
Alongside the news of the 64-bit initiatives, ARM also announced that Actions Semiconductor of China signed a license agreement for the 64-bit ARM Cortex-A50 processor family.
“Actions provides SoC solutions for portable consumer electronics,” ARM said. “With this IP license, Actions will develop 64-bit SoC solutions targeting the tablet and over-the-counter (OTT) set top box markets.”
The announcements from ARM come at an appropriate time, as it was only last week that Google announced the latest version of its Android mobile operating system, Android L, which comes with support for 64-bit processors. ARM’s latest developments mean that Android developers are likely to take advantage of them in the push to take Android to the 64-bit market.
Despite speculation that it would launch as Android 5.0 Lollipop, Google outed its next software iteration on Wednesday last week as simply Android L, touting the oddly-named iteration as “the largest update to the operating system yet”.
Can MediTek Win With Amazon?
According to the Taiwan Economic Daily, the chipmaker will supply SoCs for upcoming Amazon tablets. Details are sketchy and it is unclear whether MediaTek has landed an order for all Kindle Fire SKUs or just one of them. The paper claims MediaTek will start shipping the chips later this year, but we have no way of confirming or denying the report.
The chip in question appears to be the MT8135. It is a mid-range big.LITTLE part announced last year and it features two Cortex A15 and two Cortex A7 CPU cores. The GPU comes from Imagination and it’s the relatively fresh PowerVR G6200. The GPU is capable of churning out 83.2 GFLOPS at 650MHz, depending on the configuration of course.
It sounds like a decent all-round SoC, with a substantially faster GPU than previous MediaTek offerings in the same segment, which were powered by venerable SGX 54x and Mali 400/450 GPUs.
Information is limited and we can’t say for sure whether or not MediaTek actually landed the deal, or whether the deal includes more than a single Kindle Fire SKU. If true, it is a big coup for the Taiwan-based chipmaker, as Amazon ships up to two million Kindle tablets each quarter.
It would also help MediaTek’s ambitious tablet plans. The company hopes to double shipments of tablet-centric SoC products this year.
ARM To Focus On 64-bit SoC
ARM announced its first 64-bit cores a while ago and SoC makers have already rolled out several 64-bit designs. However, apart from Apple nobody has consumer oriented 64-bit ARM devices on the market just yet. They are slowly starting to show up and ARM says the transition to 64-bit parts is accelerating. However, the first wave of 64-bit ARM parts is not going after the high-end market.
Is 64-bit support on entry-level SoCs just a gimmick?
This trend raises a rather obvious question – are low end ARMv8 parts just a marketing gimmick, or do they really offer a significant performance gain? There is no straight answer at this point. It will depend on Google and chipmakers themselves, as well as phonemakers.
Qualcomm announced its first 64-bit part late last year. The Snapdragon 410 won’t turn many heads. It is going after $150 phones and it is based on Cortex A53 cores. It also has LTE, which makes it rather interesting.
MediaTek is taking a similar approach. Its quad-core MT6732 and octa-core MT6752 parts are Cortex A53 designs, too. Both sport LTE connectivity.
Qualcomm and MediaTek appear to be going after the same market – $100 to $150 phones with LTE and quad-core 64-bit stickers on the box. Marketers should like the idea, as they’re getting a few good buzzwords for entry-level gear.
However, we still don’t know much about their real-world performance. Don’t expect anything spectacular. The Cortex A53 is basically the 64-bit successor to the frugal Cortex A7. The A53 has a bit more cache, 40-bit physical addresses and it ends up a bit faster than the A7, but not by much. ARM says the A7 delivers 1.9DMIPS/MHz per core, while the A53 churns out 2.3DMIPS/MHz. That puts it in the ballpark of the good old Cortex A9. The first consumer oriented quad-core Cortex A9 part was Nvidia’s Tegra 3, so in theory a Cortex A53 quad-core could be as fast as a Tegra 3 clock-for-clock, but at 28nm we should see somewhat higher clocks, along with better graphics.
That’s not bad for $100 to $150 devices. LTE support is just the icing on the cake. Keep in mind that the Cortex A7 is ARM’s most efficient 32-bit core, hence we expect nothing less from the Cortex A53.
The Cortex A57 conundrum
Speaking to CNET’s Brooke Crothers, ARM executive vice president of corporate strategy Tom Lantzsch said the company was surprised by strong demand for 64-bit designs.
“Certainly, we’ve had big uptick in demand for mobile 64-bit products. We’ve seen this with our [Cortex] A53, a high-performance 64-bit mobile processor,” Lantzch told CNET.
He said ARM has been surprised by the pace of 64-bit adoption, with mobile parts coming from Qualcomm, MediaTek and Marvell. He said he hopes to see 64-bit phones by Christmas, although we suspect the first entry-level products will appear much sooner.
Lantzsch points out that even 32-bit code will run more efficiently on 64-bit ARMv8 parts. As software support improves, the performance gains will become more evident.
But where does this leave the Cortex A57? It is supposed to replace the Cortex A15, which had a few teething problems. Like the A15 it is a relatively big core. The A15 was simply too big and impractical on the 32nm node. On 28nm it’s better, but not perfect. It is still a huge core and its market success has been limited.
As a result, it’s highly unlikely that we will see any 28nm Cortex A57 parts. Qualcomm’s upcoming Snapdragon 810 is the first consumer oriented A57 SoC. It is a 20nm design and it is coming later this year, just in time for Christmas as ARM puts it. However, although the Snapdragon 810 will be ready by the end of the year, the first phones based on the new chip are expected to ship in early 2015.
While we will be able to buy 64-bit Android (and possibly Windows Phone) devices before Christmas, most if not all of them will be based on the A53. That’s not necessarily a bad thing. Consumers won’t have to spend $500 to get a 64-bit ARM device, so the user base could start growing long before high-end parts start shipping, thus forcing developers and Google to speed up 64-bit development.
If rumors are to be believed, Google is doing just that and it is not shying away from small 64-bit cores. The search giant is reportedly developing a $100 Nexus phone for emerging markets. It is said to be based on MediaTek’s MT6732 clocked at 1.5GHz. Sounds interesting, provided the rumour turns out to be true.
Intel Outs New Xeon Chipset
Intel has released details about its new Xeon E7 v2 chipset. The Xeon processor E7 8800/4800/2800 v2 product family is designed to support up to 32-socket servers with configurations of up to 15 processing cores and up to 1.5 terabytes of memory per socket.
The chip is designed for the big data end of the Internet of Things movement, which the processor maker projected will grow to consist of at least 30 billion devices by 2020. Beyond two times better performance power, Intel is promising a few other upgrades with the next generation of this data-focused chipset, including triple the memory capacity, four times the I/O bandwidth and the potential to reduce total cost of ownership by up to 80 percent.
The 15-core variants with the largest thermal envelope (155W) run at 2.8GHz with 37.5MB of cache and 8 GT/s QuickPath connectivity. The lowest-power models in the list have 105W TDPs and run at 2.3GHz with 24MB of cache and 7.2 GT/s of QuickPath bandwidth. There was also talk of 40W, 1.4GHz models at ISSCC but they have not been announced yet.
Intel has signed on nearly two dozen hardware partners to support the platform, including Asus, Cisco, Dell, EMC, and Lenovo. On the software end, Microsoft, SAP, Teradata, Splunk, and Pivotal also already support the new Xeon family. IBM and Oracle are among the few that support Xeon E7 v2 on both sides of the spectrum.
Is Intel Expanding?
Even if it means that it will be the first to make ARM’s 64-bit chips, Intel said that it wants to expand its contract foundry work. Intel CEO Brian Krzanich said he would expand his company’s small contract manufacturing business, paving the way for more chipmakers to tap into the world’s most advanced process technology.
Krzanich told analysts that he planned to step up the company’s foundry work, effectively giving Intel’s process technology to its rivals. He said that company’s who can use Intel’s leading edge and build computing capabilities that are better than anyone else’s, are good candidates for foundry service. Krzanich added that the slumping personal computer industry, Intel’s core market, was showing signs of bottoming out.
Intel also unveiled two upcoming mobile chips from its Atom line designed interchange features to create different versions of the component. A high-end version of the new chip, code named Broxton, and is due out in mid-2015. SoFIA, a low-end chip was shown as an example of Intel’s pragmatism and willingness to change how it does business. Krzanich said that in the interest of speed, SoFIA would be manufactured outside of Intel, with the goal of bringing it to market next year.
Intel will move production of SoFIA chips to its own 14 nanometer manufacturing lines, Krzanich added.