Syber Group
Toll Free : 855-568-TSTG(8784)
Subscribe To : Envelop Twitter Facebook Feed linkedin

Is TSMC Experiencing Unusual Growth?

September 19, 2016 by  
Filed under Computing

Comments Off on Is TSMC Experiencing Unusual Growth?

TSMC s expected to see a 10 percent revenue increase in 2016.

Company co-CEO Mark Liu said that while the fourth quarter could be a bit rough as customers start their inventory adjustments, TSMC’s sales for the quarter will still outperform those for the third quarter.

Talking to Digitimes Lui said that smartphone demand was affected negatively by macroeconomic factors in the first half of 2016. But apparently smartphone chip clients are ordering again in the second half of the year.

TSMC previously estimated its 2016 revenues would grow 5-10 per cent. The foundry expects to meet the high end of the growth guidance, Liu said. In his speech at the CEO Forum of SEMICON Taiwan 2016. Liu claimed that the foundry industry growth is being driven by the markets for smartphones, HPC, automotive and IoT.

Apps like Pokemon G will require more silicon chips used in mobile devices that will be another growth driver in the future, Liu said.

Courtesy-Fud

TSMC Working On Apple’s A11 Processor

May 20, 2016 by  
Filed under Computing

Comments Off on TSMC Working On Apple’s A11 Processor

Apple’s partner in crime, TSMC has begun to tape out the design for Apple’s A11 processor built on a 10nm FinFET process.

Digitimes’ deep throats claimed TSMC is expected to achieve certification on its 10nm process in the fourth quarter of 2016, and deliver product samples to the customer for validation in the first quarter of 2017.

This means that TSMC could begin small-volume production for Apple’s A11 chips as early as the second quarter of 2017 and building the chips will likely start to generate revenues at TSMC in the third quarter. The A11-series processor will power the iPhone models slated for launch in the second half of 2017.

TSMC is expected to get two-thirds of the overall A11 chip orders from Apple.

The company is officially refusing to comment on Digitimes’ story, but it does fit into what we have already been told about Jobs’ Mob’s plans for next year.

Courtesy-Fud

Is TSMC Taking A Fall?

April 28, 2016 by  
Filed under Computing

Comments Off on Is TSMC Taking A Fall?

On Thursday Taiwan Semiconductor Manufacturing Company announced an 18 percent quarterly revenue decline for Q1 2016 from the same timeframe a year ago in Q1 2015. The chip manufacturing giant also announced Q1 2016 net profit of $2 billion USD ($64.78 billion TWD), representing an 8.3 percent quarterly profit decline from the same timeframe a year ago in Q1 2015.

For TSMC, Q1 2016 was marked by a reduction of demand for high-end smartphones, while smartphone demand in China and emerging markets had upward momentum. Beginning Q2 2016 and onward, the company expect to get back onto a growth trajectory and is projected to hit a 5 to 10 percent growth rate in 2016.

“Our 10-nanometer technology development is on track,” said company president and co-CEO Mark Liu during the company’s Q4 2015 earnings call. “We are currently in intensive yield learning mode in our technology development. Our 256-megabit SRAM is yielding well. We expect to complete process and product qualification and begin customer product tape-outs this quarter.”

“Our 7-nanometer technology development progress is on schedule as well. TSMC’s 7 nanometer technology development leverage our 10-nanometer development very effectively. At the same time, TSMC’s 7-nanometer offers a substantial density improvement, performance improvement and power reduction from 10-nanometer.

These two technologies, 10-nanometer and 7-nanometer, will cover a very wide range of applications, including application processors for smartphone, high-end networking, advanced graphics, field-programmable gate arrays, game consoles, wearables and other consumer products.”

In Q1 2016, TSMC reached a gross margin of 44.9 percent, an operating margin of 34.6 percent and a net profit margin of 31.8 percent respectively. Going forward into Q2 2016, the company is expecting revenue between ~$6.65 billion and ~$6.74 billion USD, gross margins between 49 and 51 percent, and operating profit margins between 38.5 and 40.5 percent, respectively.

Chips used for communications and industrial uses represented over 80 percent of TSMC’s revenue in FY 2015. The company was also able to improve its margins by increasing 16-nanometer production, and like many other semiconductor companies, is preparing for an expected upswing sometime in 2017.

In February, a 6.4-magnitude earthquake struck southern Taiwan where TSMC’s 12-inch Fab 14 is located, a current site of 16-nanometer production. The company expected to have a manufacturing impact above 1 percent in the region with a slight reduction in wafer shipments for the quarter.

“Although the February 6 earthquake caused some delay in wafer shipments in the first quarter, we saw business upside resulting from demand increases in mid- and low-end smartphone segments and customer inventory restocking,” said Lora Ho, Senior Vice President and Chief Financial Officer of TSMC.

“We expect our business in the second quarter will benefit from continued inventory restocking and recovery of the delayed shipments from the earthquake.”

In fiscal year 2016, the company will spend between $9 and $10 billion on ramping up the 16-nanometer process node, constructing Fab 15 for 12-inch wafers in Nanjing, China, and beginning commercial production of the 10-nanometer FinFET process at this new facility. Samsung and Intel are also expected to start mass production of 10-nanometer products by the end of 2016.

During its Q4 2015 earnings call, company president and co-CEO Mark Liu stated the company is currently preparing and working on a 7-nanometer process node and plans to begin volume production sometime in 2018. Meanwhile, since January 2015, a separate research and development team at TSMC has been laying the groundwork for a 5-nanometer process which the company expects to bring into commercial production sometime in 1H 2020.

So far in Q1 2016, shipments of 16 and 20-nanometer wafers have accounted for around 23 percent of the company’s total wafer revenues.

Courtesy-Fud

Samsung And TSMC Battle It Out

February 4, 2016 by  
Filed under Computing

Comments Off on Samsung And TSMC Battle It Out

Samsung and TSMC are starting to slug it out introducing Gen.3 14 and 16-nano FinFET system semiconductor processes, but the cost could mean that smartphone makers shy away from the technology in the short term.

It is starting to look sales teams for the pair are each trying to show that they can use the technology to reduce the most electricity consumption and production costs.

In its yearly result for 2015, TSMC made an announcement that it is planning to enter mass-production system of chips produced by 16-nano FinFET Compact (FFC) process sometime during 1st quarter of this year. TSMC had finished developing 16-nano FFC process at the end of last year. During the announcement TSMC talked up the fact that its 16-nano FFC process focuses on reducing production cost more than before and implementing low electricity.

TSMC is apparently ready for mass-production of 16-nano FFC process sometime during 1st half of this year and secured Huawei’s affiliate called HiSilicon as its first customer.

HiSilicon’s Kirin 950 that is used for Huawei’s premium Smartphone called Mate 8 is produced by TSMC’s 16-nano FF process. Its A9 Chip, which is used for Apple’s iPhone 6S series, is mass-produced using the 16-nano FinFET Plus (FF+) process that was announced in early 2015. By adding FFC process, TSMC now has three 16-nano processors in action.

Samsung is not far behind it has mass-produced Gen.2 14-nano FinFET using a process called LPP (Low Power Plus). This has 15 per cent lower electricity consumption compared to Gen.1 14-nano process called LPE (Low Power Early).

Samsung Electronics’ 14-nano LPP process was seen in the Exynos 8 OCTA series that is used for Galaxy S7 and Qualcomm’s Snapdragon 820. But Samsung Electronics is also preparing for Gen.3 14-nano FinFET process.

Vice-President Bae Young-chang of Samsung’s LSI Business Department’s Strategy Marketing Team said it will use a process similar to the Gen.2 14-nano process.

Both Samsung and TSMC might have a few problems. It is not clear what the yields of these processes are and this might increase the production costs.

Even if Samsung Electronics and TSMC finish developing 10-nano process at the end of this year and enter mass-production system next year, but they will also have to upgrade their current 14 and 16-nano processes to make them more economic.

Even if 10-nano process is commercialized, there still will be many fabless businesses that will use 14 and 16-nano processes because they are cheaper. While we might see a few flagship phones using the higher priced chips, it might be that we will not see 10nm in the majority of phones for years.

 

Courtesy-Fud

AMD Goes Full Steam To Open-Source

December 30, 2015 by  
Filed under Computing

Comments Off on AMD Goes Full Steam To Open-Source

AMD and now RTG (Radeon Technologies Group) are involved in a major push to open source GPU resources.

According to Ars Technica Under the handle “GPUOpen” AMD is releasing a slew of open-source software and tools to give developers of games, heterogeneous applications, and HPC applications deeper access to the GPU and GPU resources.

In a statement AMD said that as a continuation of the strategy it started with Mantle, it is giving even more control of the GPU to developers.

“ As console developers have benefited from low-level access to the GPU, AMD wants to continue to bring this level of access to the PC space.”

The AMD GPUOpen initiative is meant to give developers the ability to use assets they’ve already made for console development. They will have direct access to GPU hardware, as well as access to a large collection of open source effects, tools, libraries and SDKs, which are being made available on GitHub under an MIT open-source license.

AMD wants GPUOpen will enable console-style development for PC games through this open source software initiative. It also includes an end-to-end open source compute infrastructure for cluster-based computing and a new Linux software and driver strategy

All this ties in with AMD’s Boltzmann Initiative and an HSA (Heterogeneous System Architecture) software suite that includes an HCC compiler for C++ development. This was supposed to open the field of programmers who can use HSA. A new HCC C++ compiler was set up to enable developers to more easily use discrete GPU hardware in heterogeneous systems.

It also allows developers to convert CUDA code to portable C++. According to AMD, internal testing shows that in many cases 90 percent or more of CUDA code can be automatically converted into C++ with the final 10 percent converted manually in the widely popular C++ language. An early access program for the “Boltzmann Initiative” tools is planned for Q1 2016.

AMD GPUOpen includes a new Linux driver model and runtime targeted at HPC Cluster-Class Computing. The headless Linux driver is supposed to handle high-performance computing needs with low latency compute dispatch and PCI Express data transfers, peer-to-peer GPU support, Remote Direct Memory Access (RDMA) from InfiniBand that interconnects directly to GPU memory and Large Single Memory Allocation support.

Courtesy-Fud

TSMC Goes Fan-Out Wafers

December 23, 2015 by  
Filed under Computing

Comments Off on TSMC Goes Fan-Out Wafers

TSMC is scheduled to move its integrated fan-out (InFO) wafer-level packaging technology to volume production in the second quarter of 2016.

Apparently the fruity cargo cult Apple has already signed up to adopt the technology, which means that the rest of the world’s press will probably notice.

According to the Commercial Times TSMC will have 85,000-100,000 wafers fabricated with the foundry’s in-house developed InFo packaging technology in the second quarter of 2016.

TSMC has disclosed its InFO packaging technology will be ready for mass production in 2016. Company president and co-CEO CC Wei remarked at an October 15 investors meeting that TSMC has completed construction of a new facility in Longtan, northern Taiwan.

TSMC’s InFo technology will be ready for volume production in the second quarter of 2016, according to Wei.

TSMC president and co-CEO Mark Liu disclosed the company is working on the second generation of its InFO technology for several projects on 10nm and 7nm process nodes.

Source-http://www.thegurureview.net/computing-category/tsmc-goes-fan-out-wafers.html

AMD Appears To Be Pushing It’s Boltzmann Plan

December 10, 2015 by  
Filed under Computing

Comments Off on AMD Appears To Be Pushing It’s Boltzmann Plan

Troubled chipmaker AMD is putting a lot of its limited investment money into the “Boltzmann Initiative” which is uses heterogeneous system architecture ability to harness both CPU and AMD GPU for compute efficiency through software.

VR-World says that stage one results are finished and where shown off this week at SC15. This included a Heterogeneous Compute Compiler (HCC); a headless Linux driver and HSA runtime infrastructure for cluster-class, High Performance Computing (HPC); and the Heterogeneous-compute Interface for Portability (HIP) tool for porting CUDA-based applications to C++ programming.

AMD hopes the tools will drive application performance from machine learning to molecular dynamics, and from oil and gas to visual effects and computer-generated imaging.

Jim Belak, co-lead of the US Department of Energy’s Exascale Co-design Center in Extreme Materials and senior computational materials scientist at Lawrence Livermore National Laboratory said that AMD’s Heterogeneous-compute Interface for Portability enables performance portability for the HPC community.

“The ability to take code that was written for one architecture and transfer it to another architecture without a negative impact on performance is extremely powerful. The work AMD is doing to produce a high-performance compiler that sits below high-level programming models enables researchers to concentrate on solving problems and publishing groundbreaking research rather than worrying about hardware-specific optimizations.”

The new AMD Boltzmann Initiative suite includes an HCC compiler for C++ development, greatly expanding the field of programmers who can leverage HSA.

The new HCC C++ compiler is a key tool in enabling developers to easily and efficiently apply the hardware resources in heterogeneous systems. The compiler offers more simplified development via single source execution, with both the CPU and GPU code in the same file.

The compiler automates the placement code that executes on both processing elements for maximum execution efficiency.

Source- http://www.thegurureview.net/computing-category/amd-appears-to-be-pushing-its-boltzmann-plan.html

GPU Shipments Appear To Be On The Rise

December 1, 2015 by  
Filed under Computing

Comments Off on GPU Shipments Appear To Be On The Rise

Beancounters at JPR have been adding up the numbers and dividing by their shoe size and worked out that GPU shipments are up for both Nvidia and AMD.

Over the last few months both have been busy with new releases. Nvidia has its GeForce GTX 950 and GTX 980 Ti, while AMD put its first HBM-powered cards in the Radeon R9 Fury X, Fury and the super-small R9 Nano into the shops.

According to JPR, overall GPU shipments are up quarter-over-quarter – with AMD’s overall GPU shipments up 15.8 per cent. But before AMD fanboys get all excited by a surprise return to form from AMD, JPR said that that NVIDIA “had an exceptionally strong quarter”. Nvidia saw an uptick of 21.3 per cent.

The PC market as a whole increased by 7.5 per cent quarter-over-quarter but decreased 9 per cent year-over-year. Nivida’s discrete GPU shipments were up 26.3 per cent according to JPR, while AMD’s discrete GPUs spiked by 33 per cent.

AMD’s mobile GPU shipments for notebooks increased by 17 per cent, while NVIDIA had 14 per cent.

Courtesy-http://www.thegurureview.net/computing-category/gpu-shipments-appear-to-be-on-the-rise.html

Will AMD’s Newest SoC Save The Company?

November 3, 2015 by  
Filed under Computing

Comments Off on Will AMD’s Newest SoC Save The Company?

The troubled chipmaker AMD thinks it is onto a winner with its new AMD Embedded R-Series SOC processors.

Designed for demanding embedded needs, the processors incorporate the newest AMD 64-bit x86 CPU core (“Excavator”), plus third-generation Graphics Core Next GPU architecture, and better power management for reduced energy consumption.

AMD tells us that combined, these chips provide industry-leading graphics performance and key embedded features for next-generation designs. The SOC architecture enables simplified, small form factor board and system designs from AMD customers and a number of third party development platform providers.

What AMD brings to the party is its graphics and multimedia performance, including capability for hardware-accelerated decode of 4K video playback and support for the latest DDR4 memory.
Jim McGregor, principal analyst, TIRIAS Research said that AMDs push into x86 embedded platforms is paying off with an increasing number of customers and applications.

“There is a need for immersive graphics, high-quality visualization, and parallel computing in an increasing number of embedded applications. Across these fronts, the AMD Embedded R-Series SOC is a very compelling solution.”

Scott Aylor, corporate vice president and general manager, AMD Embedded Solutions said that his outfit’s AMD Embedded R-Series SOC is a strong match for these needs in a variety of industries including digital signage, retail signage, medical imaging, electronic gaming machines, media storage, and communications and networking.

“The platform offers a strong value proposition for this next generation of high-performance, low-power embedded designs.”

The new AMD Embedded R-Series SOCs offer 22 percent improved GPU performance when compared to the 2nd Generation AMD Embedded R-Series APU2 and a 58 percent advantage against the Intel Broadwell Core i7 when running graphics-intensive benchmarks.

AMD released some of the specs for its integrated AMD Radeon graphics including:

Up to eight compute units4 and two rendering blocks

GPU clock speeds up to 800MHz resulting in 819 GFLOPS

•DirectX 12 support

Fully HSA Enabled

The AMD Embedded R-Series SOC was architected with embedded customers in mind and includes features such as industrial temperature support, dual-channel DDR3 or DDR4 support with ECC (Error Correction Code), Secure Boot, and a broad range of processor options.

It has a configurable thermal design power (cTDP) allows designers to adjust the TDPs from 12W to 35W in 1W increments for greater flexibility.

The SOC also has a 35 percent reduced footprint when compared to the 2nd Generation AMD Embedded R-Series APU, making it an excellent choice for small form factor applications.

AMD said that the range is the first embedded processor with dual-channel 64-bit DDR4 or DDR3 with Error-Correction Code (ECC), with speeds up to DDR4-2400 and DDR3-2133, and support for 1.2V DDR4 and 1.5V/1.35V DDR3.

Its dedicated AMD Secure Processor supports secure boot with AMD Hardware Validated Boot (HVB) and initiates trusted boot environment before starting x86 cores
It has a high-performance Integrated FCH featuring PCIe Gen3 USB3.0, SATA3, SD, GPIO, SPI, I2S, I2C, and UART

The AMD Embedded R-Series SOC provides industry-leading ten-year longevity of supply. The processors support Microsoft Windows 7, Windows Embedded 7 and 8 Standard, Windows 8.1, Windows 10, and AMD’s all-open Linux driver including Mentor Embedded Linux from Mentor Graphics and their Sourcery CodeBench IDE development tools.

It will be interesting to see if AMD can make up the ground it has lost on PCs and higher ticket items. Most of the company still appears to be in a holding pattern until Zen arrives.

Courtesy-http://www.thegurureview.net/computing-category/will-amds-newest-soc-save-the-company.html

Is AMD Losing Top Scientist To nVidia?

October 27, 2015 by  
Filed under Computing

Comments Off on Is AMD Losing Top Scientist To nVidia?

AMD is reeling after the high profile exit of one its top CPU brains Phil to rival Nvidia.

The outfit has been going through hell lately. Last month AMD ace CPU architect Jim Keller stepped away from the company after completing his work on Zen.

Rogers was one of AMD’s high-ranking technology and engineering corporate fellows, and been responsible for helping to develop the software ecosystem behind AMD’s heterogeneous computing products and the Heterogeneous System Architecture.

He was a public figure for AMD and active on the software development and evangelism side, frequently presenting the latest HSA tech and announcements for AMD at keynotes and conferences.

While he is not the only person working on the software side of HSA at AMD, Rogers’ role in its development is important. Rogers was a major contributor to the HSA Foundation, helping to initially found it in 2012. He served as the Foundation’s president until he left AMD.

It seems his defection was kept secret, and took place sometime this quarter and did not manage to leak.

According to his LinkedIn profile Phil Rogers is now Nvidia’s “Chief Software Architect – Compute Server” which is similar to what he was doing over at AMD. Nvidia is not a member of the HSA Foundation, but they are currently gearing up for the launch of the Pascal GPU family, which has some features that overlap well with Phil Rogers’ expertise.

Pascal’s NVLink CPU & GPU interconnect would allow tightly coupled heterogonous computing similar to what AMD has been working on. It makes a fair bit of sense for Nvidia to bring over a heterogeneous compute specialist makes a great deal of sense.

Rogers’ departure from AMD will have to be mentioned on the earnings call on the 15th. AMD’s Gregory Stoner will probably replace him. Stoner is AMD’s current Senior Director of Compute Solutions Technology and long-time Vice President of the HSA Foundation.

Source-http://www.thegurureview.net/computing-category/is-amd-losing-top-scientist-to-nvidia.html

Next Page »