ARM Goes 4K With Mali
ARM has announced a new mobile graphics chip, the Mali-DP650 which it said was designed to handle 4K content a device’s screen and on an external display.
The new Mali GPU can push enough pixels on the local display it is more likely that it is interested in using the technology for streaming.
Many smartphones can record 4K video and this means that smartphones could be a home to high resolution content which can be streamed to a large, high resolution screen.
It looks like Mali DP650can juggle the device’s native resolution and the external display’s own resolution and the variable refresh rates. At least that is what ARM says it can do.
The GPU is naturally able to handle different resolutions but it is optimized for a “2.5K”, which means WQXGA (2560×1600) on tablets and WQHD (2560×1440) on smartphones, but also Full HD (1920×1080) for slightly lower end devices.
Mark Dickinson, general manager, media processing group, ARM said: “The Mali-DP650 display processor will enable mobile screens with multiple composition layers, for graphics and video, at Full HD (1920×1080 pixels) resolutions and beyond while maintaining excellent picture quality and extending battery life,”
“Smartphones and tablets are increasingly becoming content passports, allowing people to securely download content once and carry it to view on whichever screen is most suitable. The ability to stream the best quality content from a mobile device to any screen is an important capability ARM Mali display technology delivers.”
ARM did not say when the Mali-DP650 will be in the shops or which chips will be the first to incorporate its split-display mode feature.
Courtesy-Fud
ARM’s Mali GPU Going To Wearables
ARM has announced the Mali-470 GPU targeted at Internet of Things (IoT) and wearable devices.
The new Mali-470 GPU has half the power consumption and two times the energy efficiency of the Mali-400, and is designed for next-generation wearables and IoT devices such as industrial control panels and healthcare monitors that rely on low-cost and low-power chips.
The Mali-470 supports OpenGL ES 2.0, used by Android and Android Wear, hinting that the GPU could also find its way into low-cost smartphones. If not, ARM promises that the chip will bring smartphone-quality visuals to wearable and IoT devices, supporting screen resolutions of up to 640×640 on single-core devices, and higher resolutions for multi-core configurations.
ARM envisions the new GPU paired with its efficient Cortex-A7 or A53 CPU designs for a low-power SoC.
“ARM scrutinises every milliwatt across the entire SoC to enable OEMs to optimize energy efficiency and open up new opportunities,” said Mark Dickinson, vice president and general manager of ARM’s multimedia processing group.
“Tuning efficiency is particularly relevant for devices requiring sophisticated graphics on a low power budget such as wearables, entry-level smartphones and IoT devices. The Mali-470 has been designed to meet this demand by enabling a highly capable user interface while being extremely energy efficient.”
ARM expects the first SoCs using the GPU be ready by the end of 2016, meaning that the chip will start showing up in devices the following year.
The launch of the Mali-470 GPU comes just hours after ARM announced plans to pick up the product portfolio and other business assets of Carbon Design Systems, a supplier of cycle-accurate virtual prototyping solutions.
The deal will see Carbon’s staff transfer to ARM, where the chip firm will make use of the Massachusetts-based outfit’s expertise in virtual prototypes. This will enable ARM to iron out any bugs and make improvements to chips before they move to foundries for production.
ARM also said that Carbon will help the firm enhance its capability in SoC architectural exploration, system analysis and software bring-up.
Courtesy-TheInq
AMD’s Bet On ARM Does Is Not Working
Comments Off on AMD’s Bet On ARM Does Is Not Working
Buried in the AMD results was a note which seemed to hint that AMD’s plan to flog ARM based server chips was not going very well.
Chief executive Lisa Su admitted that ARM-based server chips have experienced slower-than-expected reception from the owners of data centres and server farms.
AMD delayed its own ARM-based Opteron microprocessor, code-named Seattle, until the fourth quarter of this year. ARM was having a harder time proving itself to the multibillion-dollar market for high-end server chips.
An engineering sample of AMD’s long awaited 8 core server SOC code named “Hierofalcon” has been spotted and tested and according to WCCTech it looked pretty good. Itis based around 8 ARM-64bit A57 cores running at 2.0Ghz. And although Hierofalcon maxes out at frugal TDP of 30W.
So even the promising reviews aren’t enough for AMD to be optimistic about the ARM based gear.
Su said in an analyst conference call that the company expects to see “modest production shipments” of Seattle in the fourth quarter. Meanwhile, AMD’s Intel-compatible “x86″ server chips will be the company’s mainstay product offering for data centres.
She said that AMD was continuing its ARM efforts and is seeing them as a longer term bet.
Source-http://www.thegurureview.net/computing-category/amds-bet-on-arm-does-not-appear-to-be-helping.html
More Details Uncovered On AMD’s ZEN Cores
Comments Off on More Details Uncovered On AMD’s ZEN Cores
Our well informed industry sources have shared a few more details about the AMD’s 2016 Zen cores and now it appears that the architecture won’t use the shared FPU like Bulldozer.
The new Zen uses a SMT Hyperthreading just like Intel. They can process two threads at once with a Hyperthreaded core. AMD has told a special few that they are dropping the “core pair” approach that was a foundation of Bulldozer. This means that there will not be a shared FPU anymore.
Zen will use a scheduling model that is similar to Intel’s and it will use competitive hardware and simulation to define any needed scheduling or NUMA changes.
Two cores will still share the L3 cache but not the FPU. This because in 14nm there is enough space for the FPU inside of the Zen core and this approach might be faster.
We mentioned this in late April where we released a few details about the 16 core, 32 thread Zen based processor with Greenland based graphics stream processor.
Zen will apparently be ISA compatible with Haswell/Broadwell style of compute and the existing software will be compatible without requiring any programming changes.
Zen also focuses on a various compiler optimisation including GCC with target of SPECint v6 based score at common compiler settings and Microsoft Visual studio with target of parity of supported ISA features with Intel.
Benchmarking and performance compiler LLVM targets SPECint v6 rate score at performance compiler settings.
We cannot predict any instruction per clock (IPC improvement) over Intel Skylake, but it helps that Intel replaced Skylake with another 14nm processor in later part of 2016. If Zen makes to the market in 2016 AMD might have a fighting chance to narrow the performance gap between Intel greatest offerings.
Courtesy-Fud
AMD Misses Again
Fabless chipmaker AMD has come up with a mixed set of results for the second quarter. The company managed to make as much cash as the cocaine nose jobs of Wall Street expected, but missed revenue expectations.
In fact its revenues were below the psychologically important billion figure at $942 million.
We knew it was going to be bad. Last week we were warned that the results would be flat. The actual figure was $942m, an 8.5 per cent sequential decline and a 34.6 per cent drop from the same period a year ago.
As you might expect, there are some measures of this not being AMD’s fault. The company is almost entirely dependent on PC sales. Not only have these fallen but don’t look like they are going to pick up for a while.
AMD’s Computing and Graphics division reported revenue of $379m, which was down 54.2 per cent, year-on-year. Its operating loss was $147m, compared to a $6m operating loss for last year’s quarter.
Lisa Su, AMD president and CEO, in a statement said that strong sequential revenue growth in AMD’s enterprise, embedded, and semi-custom segment and channel business was not enough to offset near-term problems in its PC processor business. This was due to lower than expected consumer demand that impacted sales to OEMs, she said.
“We continue to execute our long-term strategy while we navigate the current market environment. Our focus is on developing leadership computing and graphics products capable of driving profitable share growth across our target markets,” she added.
In the semi-custom segment, AMD makes chips for video game consoles such as the Nintendo Wii U, Microsoft Xbox One, and Sony PlayStation 4 consoles. That segment did reasonably well, up 13 percent from the previous quarter but down 8 percent from a year ago.
But AMD’s core business of processors and graphics chips fell 29 percent from the previous quarter and 54 percent from a year ago. AMD said it had decreased sales to manufacturers of laptop computers.
Figures like this strap a large target on AMD’s back with a sign saying “take me over” but AMD is not predicting total doom yet.
For the third quarter, AMD expects revenue to increase 6 percent, plus or minus 3 percent, sequentially, which is a fairly conservative outlook given the fact that Windows 10 is expected to push a few sales its way.
AMD supplies chips to the Nintendo Wii U, Microsoft Xbox One, and Sony PlayStation 4 consoles and these seem to be going rather well.
ARM Sets New mBed Standard
ARM has bought in a new assurance standard to work with embedded devices.
The ARM mbed Enabled program aims to increase the deployment rate of Internet of Things (IoT) products and supporting technologies by giving partners the ability to label them as interoperable mbed-based devices.
Arm said that the accreditation program will cover solutions entering a broad range of developer markets; from silicon and modules to OEM products and innovative cloud services. Accreditation will be free of charge.
ARM Zach Shelby, vice president of IoT business marketing, said that ARM mbed Enabled accreditation will assure the diverse IoT ecosystem that they are using technologies backed up by an expert community of innovators,.
“This will also instill confidence in end markets where interoperability, trust and security standardisation is required to unlock commercial potential.”
Since the ARM mbed IoT Device Platform was announced in October 2014, the mbed Partner ecosystem has continued to grow from the initial 24 launch partners. Today, 8 new partners are being announced including Advantech, Athos, Captiva, Espotel, Maxim Integrated, MegaChips, SmeshLink, and Tieto.
Did AMD Commit Fraud?
AMD must face claims that it committed securities fraud by hiding problems with the bungled 2011 launch of Llano that eventually led to a $100 million write-down, a US court has decided.
According to Techeye US District Judge Yvonne Gonzales Rogers said plaintiffs had a case that AMD officials misled them by stating in the spring of 2011 and will have to face a full trial.
The lawsuit was over the Llano chip, which AMD had claimed was “the most impressive processor in history.”
AMD originally said that the product launch would happen in the fourth quarter of 2010, sales of the Llano were delayed because of problems at the company’s chip manufacturing plant.
The then Chief Financial Officer Thomas Seifert told analysts on an April 2011 conference call that problems with chip production for the Llano were in the past, and that the company would have ample product for a launch in the second quarter.
Press officers for AMD continued to insist that there were no problems with supply, concealing the fact that it was only shipping Llanos to top-tier computer manufacturers because it did not have enough chips.
By the time AMD ramped up Llano shipments in late 2011, no one wanted them any more, leading to an inventory glut.
AMD disclosed in October 2012 that it was writing down $100 million of Llano inventory as not shiftable.
Shares fell nearly 74 percent from a peak of $8.35 in March 2012 to a low of $2.18 in October 2012 when the market learned the extent of the problems with the Llano launch.
Will The Chip Industry Take Fall?
Microchip Technology has managed to scare Wall Street by warning of an industry downturn. This follows rumours that a number of US semiconductor makers with global operations are reducing demand for chips in regions ranging from Asia to Europe.
Microchip Chief Executive Steve Sanghi warned that the correction will spread more broadly across the industry in the near future. Microchip expects to report sales of $546.2 million for its fiscal second quarter ending in September. The company had earlier forecast revenue in a range of $560 million to $575.9 million. Semiconductor companies’ shares are volatile at the best of times and news like this is the sort of thing that investors do not want to hear.
Trading in Intel, whiich is due to report third quarter results tomorrow, was 2.6 times the usual volume. Micron, which makes dynamic random access memory, or DRAM, was the third-most traded name in the options market. All this seems to suggest that the market is a bit spooked and much will depend on what Chipzilla tells the world tomorrow as to whether it goes into a nosedive.
Can MediTek Win With Amazon?
According to the Taiwan Economic Daily, the chipmaker will supply SoCs for upcoming Amazon tablets. Details are sketchy and it is unclear whether MediaTek has landed an order for all Kindle Fire SKUs or just one of them. The paper claims MediaTek will start shipping the chips later this year, but we have no way of confirming or denying the report.
The chip in question appears to be the MT8135. It is a mid-range big.LITTLE part announced last year and it features two Cortex A15 and two Cortex A7 CPU cores. The GPU comes from Imagination and it’s the relatively fresh PowerVR G6200. The GPU is capable of churning out 83.2 GFLOPS at 650MHz, depending on the configuration of course.
It sounds like a decent all-round SoC, with a substantially faster GPU than previous MediaTek offerings in the same segment, which were powered by venerable SGX 54x and Mali 400/450 GPUs.
Information is limited and we can’t say for sure whether or not MediaTek actually landed the deal, or whether the deal includes more than a single Kindle Fire SKU. If true, it is a big coup for the Taiwan-based chipmaker, as Amazon ships up to two million Kindle tablets each quarter.
It would also help MediaTek’s ambitious tablet plans. The company hopes to double shipments of tablet-centric SoC products this year.
ARM To Focus On 64-bit SoC
ARM announced its first 64-bit cores a while ago and SoC makers have already rolled out several 64-bit designs. However, apart from Apple nobody has consumer oriented 64-bit ARM devices on the market just yet. They are slowly starting to show up and ARM says the transition to 64-bit parts is accelerating. However, the first wave of 64-bit ARM parts is not going after the high-end market.
Is 64-bit support on entry-level SoCs just a gimmick?
This trend raises a rather obvious question – are low end ARMv8 parts just a marketing gimmick, or do they really offer a significant performance gain? There is no straight answer at this point. It will depend on Google and chipmakers themselves, as well as phonemakers.
Qualcomm announced its first 64-bit part late last year. The Snapdragon 410 won’t turn many heads. It is going after $150 phones and it is based on Cortex A53 cores. It also has LTE, which makes it rather interesting.
MediaTek is taking a similar approach. Its quad-core MT6732 and octa-core MT6752 parts are Cortex A53 designs, too. Both sport LTE connectivity.
Qualcomm and MediaTek appear to be going after the same market – $100 to $150 phones with LTE and quad-core 64-bit stickers on the box. Marketers should like the idea, as they’re getting a few good buzzwords for entry-level gear.
However, we still don’t know much about their real-world performance. Don’t expect anything spectacular. The Cortex A53 is basically the 64-bit successor to the frugal Cortex A7. The A53 has a bit more cache, 40-bit physical addresses and it ends up a bit faster than the A7, but not by much. ARM says the A7 delivers 1.9DMIPS/MHz per core, while the A53 churns out 2.3DMIPS/MHz. That puts it in the ballpark of the good old Cortex A9. The first consumer oriented quad-core Cortex A9 part was Nvidia’s Tegra 3, so in theory a Cortex A53 quad-core could be as fast as a Tegra 3 clock-for-clock, but at 28nm we should see somewhat higher clocks, along with better graphics.
That’s not bad for $100 to $150 devices. LTE support is just the icing on the cake. Keep in mind that the Cortex A7 is ARM’s most efficient 32-bit core, hence we expect nothing less from the Cortex A53.
The Cortex A57 conundrum
Speaking to CNET’s Brooke Crothers, ARM executive vice president of corporate strategy Tom Lantzsch said the company was surprised by strong demand for 64-bit designs.
“Certainly, we’ve had big uptick in demand for mobile 64-bit products. We’ve seen this with our [Cortex] A53, a high-performance 64-bit mobile processor,” Lantzch told CNET.
He said ARM has been surprised by the pace of 64-bit adoption, with mobile parts coming from Qualcomm, MediaTek and Marvell. He said he hopes to see 64-bit phones by Christmas, although we suspect the first entry-level products will appear much sooner.
Lantzsch points out that even 32-bit code will run more efficiently on 64-bit ARMv8 parts. As software support improves, the performance gains will become more evident.
But where does this leave the Cortex A57? It is supposed to replace the Cortex A15, which had a few teething problems. Like the A15 it is a relatively big core. The A15 was simply too big and impractical on the 32nm node. On 28nm it’s better, but not perfect. It is still a huge core and its market success has been limited.
As a result, it’s highly unlikely that we will see any 28nm Cortex A57 parts. Qualcomm’s upcoming Snapdragon 810 is the first consumer oriented A57 SoC. It is a 20nm design and it is coming later this year, just in time for Christmas as ARM puts it. However, although the Snapdragon 810 will be ready by the end of the year, the first phones based on the new chip are expected to ship in early 2015.
While we will be able to buy 64-bit Android (and possibly Windows Phone) devices before Christmas, most if not all of them will be based on the A53. That’s not necessarily a bad thing. Consumers won’t have to spend $500 to get a 64-bit ARM device, so the user base could start growing long before high-end parts start shipping, thus forcing developers and Google to speed up 64-bit development.
If rumors are to be believed, Google is doing just that and it is not shying away from small 64-bit cores. The search giant is reportedly developing a $100 Nexus phone for emerging markets. It is said to be based on MediaTek’s MT6732 clocked at 1.5GHz. Sounds interesting, provided the rumour turns out to be true.