IBM Goes BlueMix
IBM has put together a vast array of hosted cloud services, and now it has a single location to offer them for sale.
At IBM Cloud online marketplace, that went live on Monday, enterprises can find the full range of IBM’s offerings behind a single gateway.
“So many of our customers want to build new cloud-based, front-end systems, but they want to tie them into their back-end infrastructure. We’re delivering a whole set of integration components and control services to do the connection, and monitor and control what is taking place,” said Steve Mills, IBM senior vice president and group executive for software and systems.
The marketplace has more than 100 hosted IBM applications, as well as middleware components from IBM’s Bluemix platform as a service (PaaS). It also serves as a portal to IBM’s SoftLayer infrastructure as a service (IaaS) and houses a collection of services from IBM partners.
“It’s an open platform. It supports all the popular application development tools and structures. So it’s not uniquely IBM. There’s a lot of open source and partners,” Mills said. In addition to IBM’s own offerings, other services will be offered on the site by SendGrid, Zend, Redis Labs and other IBM partners.
IBM is banking heavily on the cloud. The company’s revenue has been declining lately, due in part to sagging hardware sales. The cloud is likely to be a good place to look for more money: Gartner expects 80 percent of organizations to use cloud services in some form by the end of 2014.
Although IBM got a late start in the cloud, at least compared with rivals Amazon and Microsoft, it’s aggressively repositioning itself as a one-stop cloud services company. It generated $4.4 billion in cloud-related revenue in 2013 and has made a number of additional investments in the area as well.
In January, the company announced it would invest $1.2 billion into expanding its SoftLayer cloud service, which it acquired last year for $2 billion.
It is also investing $1 billion in the effort to adapt its middleware software as cloud services, part of the Bluemix offering.
The new online marketplace ties together a number of these initiatives from IBM within a single portal. It can be accessed from desktops, laptops, tablets and smartphones, and it can customize the service offerings based on the user’s needs.
ARM To Focus On 64-bit SoC
ARM announced its first 64-bit cores a while ago and SoC makers have already rolled out several 64-bit designs. However, apart from Apple nobody has consumer oriented 64-bit ARM devices on the market just yet. They are slowly starting to show up and ARM says the transition to 64-bit parts is accelerating. However, the first wave of 64-bit ARM parts is not going after the high-end market.
Is 64-bit support on entry-level SoCs just a gimmick?
This trend raises a rather obvious question – are low end ARMv8 parts just a marketing gimmick, or do they really offer a significant performance gain? There is no straight answer at this point. It will depend on Google and chipmakers themselves, as well as phonemakers.
Qualcomm announced its first 64-bit part late last year. The Snapdragon 410 won’t turn many heads. It is going after $150 phones and it is based on Cortex A53 cores. It also has LTE, which makes it rather interesting.
MediaTek is taking a similar approach. Its quad-core MT6732 and octa-core MT6752 parts are Cortex A53 designs, too. Both sport LTE connectivity.
Qualcomm and MediaTek appear to be going after the same market – $100 to $150 phones with LTE and quad-core 64-bit stickers on the box. Marketers should like the idea, as they’re getting a few good buzzwords for entry-level gear.
However, we still don’t know much about their real-world performance. Don’t expect anything spectacular. The Cortex A53 is basically the 64-bit successor to the frugal Cortex A7. The A53 has a bit more cache, 40-bit physical addresses and it ends up a bit faster than the A7, but not by much. ARM says the A7 delivers 1.9DMIPS/MHz per core, while the A53 churns out 2.3DMIPS/MHz. That puts it in the ballpark of the good old Cortex A9. The first consumer oriented quad-core Cortex A9 part was Nvidia’s Tegra 3, so in theory a Cortex A53 quad-core could be as fast as a Tegra 3 clock-for-clock, but at 28nm we should see somewhat higher clocks, along with better graphics.
That’s not bad for $100 to $150 devices. LTE support is just the icing on the cake. Keep in mind that the Cortex A7 is ARM’s most efficient 32-bit core, hence we expect nothing less from the Cortex A53.
The Cortex A57 conundrum
Speaking to CNET’s Brooke Crothers, ARM executive vice president of corporate strategy Tom Lantzsch said the company was surprised by strong demand for 64-bit designs.
“Certainly, we’ve had big uptick in demand for mobile 64-bit products. We’ve seen this with our [Cortex] A53, a high-performance 64-bit mobile processor,” Lantzch told CNET.
He said ARM has been surprised by the pace of 64-bit adoption, with mobile parts coming from Qualcomm, MediaTek and Marvell. He said he hopes to see 64-bit phones by Christmas, although we suspect the first entry-level products will appear much sooner.
Lantzsch points out that even 32-bit code will run more efficiently on 64-bit ARMv8 parts. As software support improves, the performance gains will become more evident.
But where does this leave the Cortex A57? It is supposed to replace the Cortex A15, which had a few teething problems. Like the A15 it is a relatively big core. The A15 was simply too big and impractical on the 32nm node. On 28nm it’s better, but not perfect. It is still a huge core and its market success has been limited.
As a result, it’s highly unlikely that we will see any 28nm Cortex A57 parts. Qualcomm’s upcoming Snapdragon 810 is the first consumer oriented A57 SoC. It is a 20nm design and it is coming later this year, just in time for Christmas as ARM puts it. However, although the Snapdragon 810 will be ready by the end of the year, the first phones based on the new chip are expected to ship in early 2015.
While we will be able to buy 64-bit Android (and possibly Windows Phone) devices before Christmas, most if not all of them will be based on the A53. That’s not necessarily a bad thing. Consumers won’t have to spend $500 to get a 64-bit ARM device, so the user base could start growing long before high-end parts start shipping, thus forcing developers and Google to speed up 64-bit development.
If rumors are to be believed, Google is doing just that and it is not shying away from small 64-bit cores. The search giant is reportedly developing a $100 Nexus phone for emerging markets. It is said to be based on MediaTek’s MT6732 clocked at 1.5GHz. Sounds interesting, provided the rumour turns out to be true.
Can AMD Lead?
He is one of the drivers behind AMD’s transformation, with the ultimate goal of turning the chipmaker into a new organization that is not so heavily dependent on the PC market. John confirmed that the company is on the road to achieve a huge milestone in its transition plans, generating approximately 50 percent of its revenue from the non-PC market by the end of 2015.
The time for the talk could not been better, as the market reacted positively to AMD’s Q1 earnings and at press time the stock was at $4.14, up $0.45 or 12.06 percent which is a huge jump for a tech stock. Keep in mind that many tech stocks have been bearish over the last four weeks, with several massive selloffs, especially in software and internet companies.
AMD fighting back in CPU space
We covered numerous topics from desktops, notebooks and tablets strategy all the way to the server, semi-custom APUs and of course the graphics market.
John said that leadership in the graphics sector is critical in AMD’s strategy, none more so than in the PC space where AMD wants to use their performance APU’s to compete with Intel’s Core i3 and Core i5 processors in the lucrative mainstream market. This is what AMD wants to address with Kaveri and to some extent with Kabini APUs.
AMD has high hopes for its upcoming server parts where they just launched their first ARM 64-bit product for the dense server space, where AMD expects to be a leader. On the other side of the spectrum the frugal AM1 platform launched a few weeks ago and it is getting very positive reviews. The first Kaveri parts have been on sale for a while, although we would like to see more desktop SKUs, not to mention mobile Kaveri APUs, including ULV variants.
Semi-custom APUs are blurring the line between AMD’s traditional product classes, but sales appear to be good, with more than 12 million Xbox One and PlayStation 4 consoles in the wild.
Phenomenal discrete GPU sales
Byrne is quietly confident when it comes to the GPU market, having just seen very strong sales in the performance and enthusiast high end segments of the market. The surge was driven by competitive products, great games and bundles, even with the cryptocurrency craze which was more or less a fluke for AMD.
The company remains committed to the GPU market, and expects to bring the successful R9 / R7 architecture further down into the mainstream price points in 2014, with similar traction. This means AMD will continue the fight against Nvidia in desktop and notebook GPU markets, while at the same time taking on Intel on desktop and notebook side with new APUs.
AMD thinks that the mix of great gaming performance, HSA, Mantle, Open CL, compute performance and some cool technologies like facial recognition can boost its position in the GPU market. This is just one part of the magic potion that is really starting to work for AMD, but it’s good to know that when it comes to graphics and gaming, AMD will stay committed to these markets in 2014 and beyond.
Enthusiasts need not worry. Although the company is reinventing itself and pursuing non-PC revenue streams, AMD will still be there to cater to their needs.
Can AMD Grow
AMD posted some rather encouraging Q1 numbers last night, but slow PC sales are still hurting the company, along with the rest of the sector.
When asked about the PC market slump, AMD CEO Rory Read confirmed that the PC market was down sequentially 7 percent. This was a bit better than the company predicted, as the original forecast was that the PC market would decline 7 to 10 percent.
Rory pointed out that AMD can grow in the PC market as there is a lot of ground that can be taken from the competition. The commercial market did better than expected and Rory claims that AMD’s diversification strategy is taking off. AMD is trying to win market share in desktop and commercial segments, hence AMD sees an opportunity to grown PC revenue in the coming quarters. Rory also expects that tablets will continue to cannibalize the PC market. This is not going to change soon.
Kaveri and Kabini will definitely help this effort as both are solid parts priced quite aggressively. Kabini is also available in AMD’s new AM1 platform and we believe it is an interesting concept with plenty of mass market potential. Desktop and Notebook ASPs are flat which is something that the financial community really appreciated. It would not be so unusual that average selling prices were down since the global PC market was down.
Kaveri did well in the desktop high-end market in Q1 2014 and there will be some interesting announcements in the mobile market in Q2 2014 and beyond.
Can DirectX-12 Give Mobile A Boot?
Microsoft announced DirectX 12 just a few days ago and for the first time Redmond’s API is relevant beyond the PC space. Some DirectX 12 tech will end up in phones and of course Windows tablets.
Qualcomm likes the idea, along with Nvidia. Qualcomm published an blog post on the potential impact of DirectX 12 on the mobile industry and the takeaway is very positive indeed.
DirectX 12 equals less overhead, more battery life
Qualcomm says it has worked closely with Microsoft to optimise “Windows mobile operating systems” and make the most of Adreno graphics. The chipmaker points out that current Snapdragon chipsets already support DirectX 9.3 and DirectX 11. However, the transition to DirectX 12 will make a huge difference.
“DirectX 12 will turbocharge gaming on Snapdragon enabled devices in many ways. Just a few years ago, our Snapdragon processors featured one CPU core, now most Snapdragon processors offer four. The new libraries and API’s in DirectX 12 make more efficient use of these multiple cores to deliver better performance,” Qualcomm said.
DirectX 12 will also allow the GPU to be used more efficiently, delivering superior performance per watt.
“That means games will look better and deliver longer gameplay longer on a single charge,” Qualcomm’s gaming and graphics director Jim Merrick added.
What about eye candy?
Any improvement in efficiency also tends to have a positive effect on overall quality. Developers can get more out of existing hardware, they will have more resources at their disposal, simple as that.
Qualcomm also points out that DirectX 12 is also the first version to launch on Microsoft’s mobile operating systems at the same time as its desktop and console counterparts.
The company believes this emphasizes the growing shift and consumer demand for mobile gaming. However, it will also make it easier to port desktop and console games to mobile platforms.
Of course, this does not mean that we’ll be able to play Titanfall on a Nokia Lumia, or that similarly demanding titles can be ported. However, it will speed up development and allow developers and publishers to recycle resources used in console and PC games. Since Windows Phone isn’t exactly the biggest mobile platform out there, this might be very helpful and it might attract more developers.
AMD, Intel & nVidia Go OpenGL
AMD, Intel and Nvidia teamed up to tout the advantages of the OpenGL multi-platform application programming interface (API) at this year’s Game Developers Conference (GDC).
Sharing a stage at the event in San Francisco, the three major chip designers explained how, with a little tuning, OpenGL can offer developers between seven and 15 times better performance as opposed to the more widely recognised increases of 1.3 times.
AMD manager of software development Graham Sellers, Intel graphics software engineer Tim Foley and Nvidia OpenGL engineer Cass Everitt and senior software engineer John McDonald presented their OpenGL techniques on real-world devices to demonstrate how these techniques are suitable for use across multiple platforms.
During the presentation, Intel’s Foley talked up three techniques that can help OpenGL increase performance and reduce driver overhead: persistent-mapped buffers for faster streaming of dynamic geometry, integrating Multidrawindirect (MDI) for faster submission of many draw calls, and packing 2D textures into arrays, so texture changes no longer break batches.
They also mentioned during their presentation that with proper implementations of these high-level OpenGL techniques, driver overhead could be reduced to almost zero. This is something that Nvidia’s software engineers have already claimed is impossible with Direct3D and only possible with OpenGL (see video below).
Nvidia’s VP of game content and technology, Ashu Rege, blogged his account of the GDC joint session on the Nvidia blog.
“The techniques presented apply to all major vendors and are suitable for use across multiple platforms,” Rege wrote.
“OpenGL can cut through the driver overhead that has been a frustrating reality for game developers since the beginning of the PC game industry. On desktop systems, driver overhead can decrease frame rate. On mobile devices, however, driver overhead is even more insidious, robbing both battery life and frame rate.”
The slides from the talk, entitled Approaching Zero Driver Overhead, are embedded below.
At the Game Developers Conference (GDC), Microsoft also unveiled the latest version of its graphics API, Directx 12, with Direct3D 12 for more efficient gaming.
Showing off the new Directx 12 API during a demo of Xbox One racing game Forza 5 running on a PC with an Nvidia Geforce Titan Black graphics card, Microsoft said Directx 12 gives applications the ability to directly manage resources to perform synchronisation. As a result, developers of advanced applications can control the GPU to develop games that run more efficiently.
Is AMD Worried?
AMD’s Mantle has been a hot topic for quite some time and despite its delayed birth, it has finally came delivered performance in Battlefield 4. Microsoft is not sleeping it has its own answer to Mantle that we mentioned here.
Oddly enough we heard some industry people calling it DirectX 12 or DirectX Next but it looks like Microsoft is getting ready to finally update the next generation DirectX. From what we heard the next generation DirectX will fix some of the driver overhead problems that were addressed by Mantle, which is a good thing for the whole industry and of course gamers.
AMD got back to us officially stating that “AMD would like you to know that it supports and celebrates a direction for game development that is aligned with AMD’s vision of lower-level, ‘closer to the metal’ graphics APIs for PC gaming. While industry experts expect this to take some time, developers can immediately leverage efficient API design using Mantle. “
AMD also told us that we can expect some information about this at the Game Developers Conference that starts on March 17th, or in less than two weeks from now.
We have a feeling that Microsoft is finally ready to talk about DirectX Next, DirectX 11.X, DirectX 12 or whatever they end up calling it, and we would not be surprised to see Nvidia 20nm Maxwell chips to support this API, as well as future GPUs from AMD, possibly again 20nm parts.
Intel Outs New Xeon Chipset
Intel has released details about its new Xeon E7 v2 chipset. The Xeon processor E7 8800/4800/2800 v2 product family is designed to support up to 32-socket servers with configurations of up to 15 processing cores and up to 1.5 terabytes of memory per socket.
The chip is designed for the big data end of the Internet of Things movement, which the processor maker projected will grow to consist of at least 30 billion devices by 2020. Beyond two times better performance power, Intel is promising a few other upgrades with the next generation of this data-focused chipset, including triple the memory capacity, four times the I/O bandwidth and the potential to reduce total cost of ownership by up to 80 percent.
The 15-core variants with the largest thermal envelope (155W) run at 2.8GHz with 37.5MB of cache and 8 GT/s QuickPath connectivity. The lowest-power models in the list have 105W TDPs and run at 2.3GHz with 24MB of cache and 7.2 GT/s of QuickPath bandwidth. There was also talk of 40W, 1.4GHz models at ISSCC but they have not been announced yet.
Intel has signed on nearly two dozen hardware partners to support the platform, including Asus, Cisco, Dell, EMC, and Lenovo. On the software end, Microsoft, SAP, Teradata, Splunk, and Pivotal also already support the new Xeon family. IBM and Oracle are among the few that support Xeon E7 v2 on both sides of the spectrum.
Will nVidia’s Tegra 5 Go LTE?
The tradition continues. Our sources are confirming that Nvidia’s Logan SoC, possibly called Tegra 5, doesn’t come with an integrated LTE modem. Just like Apple, Nvidia makes a big fast chip with impressive Kepler based GPU, but it won’t put a an icera LTE solution inside the same chip.
Icera i500 is Tegra 5 compatible and it has AT&T certification. As the launch draws near, it should become compatible with other US and international LTE carriers like Verizon and T-mobile.
This should not be a big issue for Nvidia’s target market, manufacturers will have to choose two chips instead of one, a clear competitive disadvantage compared to future Qualcomm chips with Adreno 400 graphics and updated CPU cores, expected in early 2014.
During Nvidia’s recent conference call, CEO Jen Hsun Huang said devices based on the new Tegra 4i with integrated LTE should be announced in Q1 and ship no later than Q2. Jensen also mentioned that people are going to be “delighted by the OEM that it comes from” which is probably his way of of announcing some big brand design wins, but he also emphasised that the designs will be global rather than US. For US success you need CDMA Jensen said, but as far as we know Verizon is the only company using it.
Since Apple can pull of two chip designs from day one, we can only assume that two chip approach won’t cost much battery life compared to single chip design that has LTE on board (Snapdragon 600 and 800 ed. ). However, Nvidia is likely going to be making bets on its Kepler based GPU, expected to be the fastest graphics core ever integrated in a mobile SoC that will rock tablets and some phones around the world. The fact that Logan is likely to pack very powerful graphics sans on-die LTE makes it a bit more interesting for tablets than phones, which is exactly what we saw with the Tegra 4.
We expect to see Tegra 5 devices announced at CES 2014 so early January and with some luck we might see them shipping very early in 2014.
Sharp Shows MEMs
October 9, 2013 by admin
Filed under Around The Net
Comments Off on Sharp Shows MEMs
Sharp on Monday unveiled its latest prototypes of a new kind of display screen that it says brings several advantages over today’s liquid crystal display (LCD) screens.
The screens, called microelectromechanical systems (MEMS) displays for the tiny moving parts they contain, are being developed by the Japanese company in partnership with Qualcomm and were on show at the Ceatec electronics show just outside of Tokyo.
Behind each pixel in a MEMS display is a backlight that flashes red, green and blue in fast succession, and in front of it is a tiny shutter can be opened to let light through.
Synchronized to the backlight, the shutter can control the amount of each color of light allowed through. The eye perceives these flashes as the desired hue.
In contrast, today’s LCD screens create colored pixels using three filters. The filters swallow about two thirds of the brightness of the backlight before it leaves the display, said Akira Imai, deputy general manager of Sharp’s new business development center.
The MEMS display can allow all the light through, so the intensity of the backlight can be reduced using less power for the display, said Imai.
In a portable gadget, the screen often consumes more power than any other component, so reducing its demands can have a big impact on battery life.
The screens on show at Ceatec were 7-inch models with 800 pixel by 1,280 pixel resolution. The colors were bright and the screen image was sharp, although people viewing the screens did tend to see a brief flash of red, green and blue pixel each time they turned their eyes away from the display. That’s something Sharp is working on, said Imai.
Sharp also showed a version of the screen working in several low power modes.
The development work with Qualcomm began earlier this year when the U.S. company said it would invest $120 million into Sharp. The money, which was invested in two parts, was accompanied by Qualcomm’s MEMS expertise. Sharp has a long history in flat-panel display technology, especially LCD, and has recently been working on a new type of display called IGZO, on which the MEMS display is partly based.