Syber Group
Toll Free : 855-568-TSTG(8784)
Subscribe To : Envelop Twitter Facebook Feed linkedin

GPUs Down In Q1

June 5, 2014 by  
Filed under Around The Net

Comments Off on GPUs Down In Q1

According to Jon Peddie Research (JPR), shipments of discrete graphics cards were down in the first quarter of the year. This is in line with seasonal trends, as the market cools down after the holiday season.

The sequential drop was 6.7 percent, which was still better than the overall desktop PC market, which slumped 9 percent. However, on a year-to-year basis add-in-board (AIB) shipments were down 0.8 percent. PC sales were down 1.1 percent.
Nvidia still controls two thirds of the market

Total AIB shipments in Q1 were just 14 million units. AMD and Nvidia both saw their shipments decrease 6.6 percent, so their market share did not change much.

Nvidia controls an estimated 65 percent of the market, up from 64.2 percent last year. AMD’s market share in Q1 was 35 percent, down from 35.6 percent a year ago.

The overall volume remains weak and in the long run things could get even worse, as on-die integrated graphics have already taken a big toll on sales of entry level discrete cards. As integrated GPUs become even faster, they are likely to cannibalize the low end market even further.

JPR points out that the AIB market peaked in 1999, with 114 million units shipped. Last year saw only 65 million units and the stagnant trend is likely to continue this year.

It’s not all bad news for AIBs
Although the slump in discrete GPU shipments is hurting AMD and NV hardware partners, JPR offers a rather encouraging outlook.

It points out that graphics cards are one of the most powerful, essential and exciting components in the PC market today. PC gaming is hardly dead, in fact it is going through what can only be described as a small renaissance. PCs will offer 4K/UHD gaming years ahead of consoles and the Steam Machine concept is looking good, too.

The compute market is another driver, as JPR points out:

“The technology is entering into major new markets like supercomputers, remote workstations, and simulators almost on a daily basis. It would be little exaggeration to say that the AIB resembles the 800-pound gorilla in the room.”
The AIB market is quite a bit less colourful and eventful than it was back in the day, but at least AIBs still have a lot on their hands and they are trying to tap new markets.

Source

Can MediTek Win With Amazon?

May 23, 2014 by  
Filed under Computing

Comments Off on Can MediTek Win With Amazon?

According to the Taiwan Economic Daily, the chipmaker will supply SoCs for upcoming Amazon tablets. Details are sketchy and it is unclear whether MediaTek has landed an order for all Kindle Fire SKUs or just one of them. The paper claims MediaTek will start shipping the chips later this year, but we have no way of confirming or denying the report.

The chip in question appears to be the MT8135. It is a mid-range big.LITTLE part announced last year and it features two Cortex A15 and two Cortex A7 CPU cores. The GPU comes from Imagination and it’s the relatively fresh PowerVR G6200. The GPU is capable of churning out 83.2 GFLOPS at 650MHz, depending on the configuration of course.

It sounds like a decent all-round SoC, with a substantially faster GPU than previous MediaTek offerings in the same segment, which were powered by venerable SGX 54x and Mali 400/450 GPUs.

Information is limited and we can’t say for sure whether or not MediaTek actually landed the deal, or whether the deal includes more than a single Kindle Fire SKU. If true, it is a big coup for the Taiwan-based chipmaker, as Amazon ships up to two million Kindle tablets each quarter.

It would also help MediaTek’s ambitious tablet plans. The company hopes to double shipments of tablet-centric SoC products this year.

Source

ARM To Focus On 64-bit SoC

May 15, 2014 by  
Filed under Computing

Comments Off on ARM To Focus On 64-bit SoC

ARM announced its first 64-bit cores a while ago and SoC makers have already rolled out several 64-bit designs. However, apart from Apple nobody has consumer oriented 64-bit ARM devices on the market just yet. They are slowly starting to show up and ARM says the transition to 64-bit parts is accelerating. However, the first wave of 64-bit ARM parts is not going after the high-end market.

Is 64-bit support on entry-level SoCs just a gimmick?

This trend raises a rather obvious question – are low end ARMv8 parts just a marketing gimmick, or do they really offer a significant performance gain? There is no straight answer at this point. It will depend on Google and chipmakers themselves, as well as phonemakers.

Qualcomm announced its first 64-bit part late last year. The Snapdragon 410 won’t turn many heads. It is going after $150 phones and it is based on Cortex A53 cores. It also has LTE, which makes it rather interesting.

MediaTek is taking a similar approach. Its quad-core MT6732 and octa-core MT6752 parts are Cortex A53 designs, too. Both sport LTE connectivity.

Qualcomm and MediaTek appear to be going after the same market – $100 to $150 phones with LTE and quad-core 64-bit stickers on the box. Marketers should like the idea, as they’re getting a few good buzzwords for entry-level gear.

However, we still don’t know much about their real-world performance. Don’t expect anything spectacular. The Cortex A53 is basically the 64-bit successor to the frugal Cortex A7. The A53 has a bit more cache, 40-bit physical addresses and it ends up a bit faster than the A7, but not by much. ARM says the A7 delivers 1.9DMIPS/MHz per core, while the A53 churns out 2.3DMIPS/MHz. That puts it in the ballpark of the good old Cortex A9. The first consumer oriented quad-core Cortex A9 part was Nvidia’s Tegra 3, so in theory a Cortex A53 quad-core could be as fast as a Tegra 3 clock-for-clock, but at 28nm we should see somewhat higher clocks, along with better graphics.

That’s not bad for $100 to $150 devices. LTE support is just the icing on the cake. Keep in mind that the Cortex A7 is ARM’s most efficient 32-bit core, hence we expect nothing less from the Cortex A53.

The Cortex A57 conundrum

Speaking to CNET’s Brooke Crothers, ARM executive vice president of corporate strategy Tom Lantzsch said the company was surprised by strong demand for 64-bit designs.

“Certainly, we’ve had big uptick in demand for mobile 64-bit products. We’ve seen this with our [Cortex] A53, a high-performance 64-bit mobile processor,” Lantzch told CNET.

He said ARM has been surprised by the pace of 64-bit adoption, with mobile parts coming from Qualcomm, MediaTek and Marvell. He said he hopes to see 64-bit phones by Christmas, although we suspect the first entry-level products will appear much sooner.

Lantzsch points out that even 32-bit code will run more efficiently on 64-bit ARMv8 parts. As software support improves, the performance gains will become more evident.

But where does this leave the Cortex A57? It is supposed to replace the Cortex A15, which had a few teething problems. Like the A15 it is a relatively big core. The A15 was simply too big and impractical on the 32nm node. On 28nm it’s better, but not perfect.  It is still a huge core and its market success has been limited.

As a result, it’s highly unlikely that we will see any 28nm Cortex A57 parts. Qualcomm’s upcoming Snapdragon 810 is the first consumer oriented A57 SoC. It is a 20nm design and it is coming later this year, just in time for Christmas as ARM puts it. However, although the Snapdragon 810 will be ready by the end of the year, the first phones based on the new chip are expected to ship in early 2015.

While we will be able to buy 64-bit Android (and possibly Windows Phone) devices before Christmas, most if not all of them will be based on the A53. That’s not necessarily a bad thing. Consumers won’t have to spend $500 to get a 64-bit ARM device, so the user base could start growing long before high-end parts start shipping, thus forcing developers and Google to speed up 64-bit development.

If rumors are to be believed, Google is doing just that and it is not shying away from small 64-bit cores. The search giant is reportedly developing a $100 Nexus phone for emerging markets. It is said to be based on MediaTek’s MT6732 clocked at 1.5GHz. Sounds interesting, provided the rumour turns out to be true.

Source

Can AMD Grow

May 8, 2014 by  
Filed under Computing

Comments Off on Can AMD Grow

AMD posted some rather encouraging Q1 numbers last night, but slow PC sales are still hurting the company, along with the rest of the sector.

When asked about the PC market slump, AMD CEO Rory Read confirmed that the PC market was down sequentially 7 percent. This was a bit better than the company predicted, as the original forecast was that the PC market would decline 7 to 10 percent.

Rory pointed out that AMD can grow in the PC market as there is a lot of ground that can be taken from the competition. The commercial market did better than expected and Rory claims that AMD’s diversification strategy is taking off. AMD is trying to win market share in desktop and commercial segments, hence AMD sees an opportunity to grown PC revenue in the coming quarters. Rory also expects that tablets will continue to cannibalize the PC market. This is not going to change soon.

Kaveri and Kabini will definitely help this effort as both are solid parts priced quite aggressively. Kabini is also available in AMD’s new AM1 platform and we believe it is an interesting concept with plenty of mass market potential. Desktop and Notebook ASPs are flat which is something that the financial community really appreciated. It would not be so unusual that average selling prices were down since the global PC market was down.

Kaveri did well in the desktop high-end market in Q1 2014 and there will be some interesting announcements in the mobile market in Q2 2014 and beyond.

Source

Can DirectX-12 Give Mobile A Boot?

April 16, 2014 by  
Filed under Computing

Comments Off on Can DirectX-12 Give Mobile A Boot?

Microsoft announced DirectX 12 just a few days ago and for the first time Redmond’s API is relevant beyond the PC space. Some DirectX 12 tech will end up in phones and of course Windows tablets.

Qualcomm likes the idea, along with Nvidia. Qualcomm published an blog post on the potential impact of DirectX 12 on the mobile industry and the takeaway is very positive indeed.

DirectX 12 equals less overhead, more battery life

Qualcomm says it has worked closely with Microsoft to optimise “Windows mobile operating systems” and make the most of Adreno graphics. The chipmaker points out that current Snapdragon chipsets already support DirectX 9.3 and DirectX 11.  However, the transition to DirectX 12 will make a huge difference.

“DirectX 12 will turbocharge gaming on Snapdragon enabled devices in many ways. Just a few years ago, our Snapdragon processors featured one CPU core, now most Snapdragon processors offer four. The new libraries and API’s in DirectX 12 make more efficient use of these multiple cores to deliver better performance,” Qualcomm said.

DirectX 12 will also allow the GPU to be used more efficiently, delivering superior performance per watt.

“That means games will look better and deliver longer gameplay longer on a single charge,” Qualcomm’s gaming and graphics director Jim Merrick added.

What about eye candy?

Any improvement in efficiency also tends to have a positive effect on overall quality. Developers can get more out of existing hardware, they will have more resources at their disposal, simple as that.

Qualcomm also points out that DirectX 12 is also the first version to launch on Microsoft’s mobile operating systems at the same time as its desktop and console counterparts.

The company believes this emphasizes the growing shift and consumer demand for mobile gaming. However, it will also make it easier to port desktop and console games to mobile platforms.

Of course, this does not mean that we’ll be able to play Titanfall on a Nokia Lumia, or that similarly demanding titles can be ported. However, it will speed up development and allow developers and publishers to recycle resources used in console and PC games. Since Windows Phone isn’t exactly the biggest mobile platform out there, this might be very helpful and it might attract more developers.

Source

AMD, Intel & nVidia Go OpenGL

April 7, 2014 by  
Filed under Computing

Comments Off on AMD, Intel & nVidia Go OpenGL

AMD, Intel and Nvidia teamed up to tout the advantages of the OpenGL multi-platform application programming interface (API) at this year’s Game Developers Conference (GDC).

Sharing a stage at the event in San Francisco, the three major chip designers explained how, with a little tuning, OpenGL can offer developers between seven and 15 times better performance as opposed to the more widely recognised increases of 1.3 times.

AMD manager of software development Graham Sellers, Intel graphics software engineer Tim Foley and Nvidia OpenGL engineer Cass Everitt and senior software engineer John McDonald presented their OpenGL techniques on real-world devices to demonstrate how these techniques are suitable for use across multiple platforms.

During the presentation, Intel’s Foley talked up three techniques that can help OpenGL increase performance and reduce driver overhead: persistent-mapped buffers for faster streaming of dynamic geometry, integrating Multidrawindirect (MDI) for faster submission of many draw calls, and packing 2D textures into arrays, so texture changes no longer break batches.

They also mentioned during their presentation that with proper implementations of these high-level OpenGL techniques, driver overhead could be reduced to almost zero. This is something that Nvidia’s software engineers have already claimed is impossible with Direct3D and only possible with OpenGL (see video below).

Nvidia’s VP of game content and technology, Ashu Rege, blogged his account of the GDC joint session on the Nvidia blog.

“The techniques presented apply to all major vendors and are suitable for use across multiple platforms,” Rege wrote.

“OpenGL can cut through the driver overhead that has been a frustrating reality for game developers since the beginning of the PC game industry. On desktop systems, driver overhead can decrease frame rate. On mobile devices, however, driver overhead is even more insidious, robbing both battery life and frame rate.”

The slides from the talk, entitled Approaching Zero Driver Overhead, are embedded below.

At the Game Developers Conference (GDC), Microsoft also unveiled the latest version of its graphics API, Directx 12, with Direct3D 12 for more efficient gaming.

Showing off the new Directx 12 API during a demo of Xbox One racing game Forza 5 running on a PC with an Nvidia Geforce Titan Black graphics card, Microsoft said Directx 12 gives applications the ability to directly manage resources to perform synchronisation. As a result, developers of advanced applications can control the GPU to develop games that run more efficiently.

Source

Is AMD Worried?

March 17, 2014 by  
Filed under Computing

Comments Off on Is AMD Worried?

AMD’s Mantle has been a hot topic for quite some time and despite its delayed birth, it has finally came delivered performance in Battlefield 4. Microsoft is not sleeping it has its own answer to Mantle that we mentioned here.

Oddly enough we heard some industry people calling it DirectX 12 or DirectX Next but it looks like Microsoft is getting ready to finally update the next generation DirectX. From what we heard the next generation DirectX will fix some of the driver overhead problems that were addressed by Mantle, which is a good thing for the whole industry and of course gamers.

AMD got back to us officially stating that “AMD would like you to know that it supports and celebrates a direction for game development that is aligned with AMD’s vision of lower-level, ‘closer to the metal’ graphics APIs for PC gaming. While industry experts expect this to take some time, developers can immediately leverage efficient API design using Mantle. “

AMD also told us that we can expect some information about this at the Game Developers Conference that starts on March 17th, or in less than two weeks from now.

We have a feeling that Microsoft is finally ready to talk about DirectX Next, DirectX 11.X, DirectX 12 or whatever they end up calling it, and we would not be surprised to see Nvidia 20nm Maxwell chips to support this API, as well as future GPUs from AMD, possibly again 20nm parts.

Source

AMD’s Richland Shows Up

September 26, 2013 by  
Filed under Computing

Comments Off on AMD’s Richland Shows Up

Kaveri is coming in a few months, but before it ships AMD will apparently spice up the Richland line-up with a few low-power parts.

CPU World has come across an interesting listing, which points to two new 45W chips, the A8-6500T and the A10-6700T. Both are quads with 4MB of cache. The A8-6500T is clocked at 2.1GHz and can hit 3.1GHz on Turbo, while the A10-6700T’s base clock is 2.5GHz and it maxes out at 3500MHz.

The prices are $108 and $155 for the A8 and A10 respectively, which doesn’t sound too bad although they are still significantly pricier than regular FM2 parts.

Source

AMD’s Kaveri Coming In Q4

September 19, 2013 by  
Filed under Computing

Comments Off on AMD’s Kaveri Coming In Q4

AMD really needs to make up its mind and figure out how it interprets its own roadmaps. A few weeks ago the company said desktop Kaveri parts should hit the channel in mid-February 2014. The original plan called for a launch in late 2013, but AMD insists the chip was not delayed.

Now though, it told Computerbase.de that the first desktop chips will indeed appear in late 2013 rather than 2014, while mobile chips will be showcased at CES 2014 and they will launch in late Q1 or early Q2 2014.

As we reported earlier, the first FM2+ boards are already showing up on the market, but at this point it’s hard to say when Kaveri desktop APUs will actually be available. The most logical explanation is that they will be announced sometime in Q4, with retail availability coming some two months later.

Kaveri is a much bigger deal than Richland, which was basically Trinity done right. Kaveri is based on new Steamroller cores, it packs GCN graphics and it’s a 28nm part. It is expected to deliver a significant IPC boost over Piledriver-based chips, but we don’t have any exact numbers to report.

Source

Samsung’s Eight-core Chip Goes Hacking

August 13, 2013 by  
Filed under Computing

Comments Off on Samsung’s Eight-core Chip Goes Hacking

A Samsung eight-core chip used in some Galaxy S4 mobile devices is now available for hackers to play with on a developer board from South Korea-based Hardkernel.

Hardkernel’s Odroid XU board has incorporated Samsung’s eight-core Exynos 5 Octa 5410 chip, which is based on ARM’s latest processor designs. Samsung recently announced a new eight-core chip, the Exynos 5 Octa 5420, which packs faster graphics and application processing than the 5410. The 5420 has not yet been shipped yet, however.

The Odroid board is priced at $149 through Aug. 31, after which it will be offered for $169. Samsung for many months has said that a board with an eight-core chip would be released, and has shown prototype developer boards at conferences.

Odroid-XU will provide developers an opportunity to write programs tuned for Samsung’s octa-core chip, which has been a source of controversy. Analysts have said the eight-core design is overkill for small devices like smartphones and tablets, which need long battery life.

The eight-core chip design also takes up a lot of space, which prevented Samsung from putting LTE radios inside some Galaxy S4 models. Qualcomm, which hesitantly moved from the dual core to the quad-core design on its Snapdragon chips, on Friday criticized eight-core chips, calling the idea “dumb.”

Despite the criticism, the board will give developers a first true glimpse of, and an opportunity to write and test applications for, ARM’s Big.Little design. The design combines high-power cores for demanding applications with low-power cores for mundane tasks like texting and calling.

Samsung’s iteration of Big.Little in the Exynos 5 Octa 5410 chip combines four processors based on ARM’s latest Cortex-A15 processor design, which incorporates four low-power Cortex-A7 CPUs. The Cortex-A15 is ARM’s latest processor design and succeeds the previous Cortex-A9 core, which was used in popular smartphones like Apple’s iPhone and the Galaxy S3. Samsung said the eight-core chip provides a balance of power and performance, with the high-power cores kicking in only when necessary.

The board has an Imagination Technologies PowerVR SGX544MP3 graphics processor, 2GB of low-power DDR3 DRAM, two USB 3.0 ports and four USB 2.0 ports. Other features include Wi-Fi, Ethernet and optional Bluetooth. Google’s Android 4.2 operating system is preloaded, and support for other Linux distributions like Ubuntu is expected soon. The board has already been benchmarked on Ubuntu 13.04.

Source

« Previous PageNext Page »