AMD Finally Confirms Polaris Specs
In an official slides that have leaked, AMD has confirmed most of the specifications for both the Polaris 10 and the Polaris 11 GPUs which will power the upcoming Radeon RX 480, RX 470 and RX 460 graphics cards.
According to the slides published by Computerbase.de, both GPUs are based on AMD’s 4th generation Graphics Core Next (GCN 4.0) GPU architecture, offer 2.8 perf/watt improvement compared to the previous generation, have 4K encode and decode capabilities as well as bring DisplayPort 1.3/1.4 and HDR support.
Powering three different graphics cards, these two GPUs will cover different market segments, so the Polaris 10, codename Ellesmere, will be powering both the Radeon RX 480, meant for affordable VR and 1440p gaming as well as the recently unveiled RX 470, meant to cover the 1080p gaming segment. The Polaris 10 packs 36 Compute Units (CUs) so it should end up with 2304 Stream Processors. Both the RX 480 and RX 470 should be coming with 4GB or 8GB of GDDR5 memory, paired up with a 256-bit memory interface. The Ellesmere GPU offers over 5 TFLOPs of compute performance and should peak at 150W.
The Radeon RX 470 should be based on Ellesmere Pro GPU and will probably end up with both lower clocks as well as less Stream Processors and according to our sources close to the company, should launch with a US $179 price tag, while the RX 480 should launch on 29th of June with a US $199 price tag for a reference 4GB version. Most AIB partners will come up with a custom 8GB graphics cards which should probably launch at US $279+.
The Polaris 11 GPU, codename Baffin, will have 16 CUs and should end up with 1024 Stream Processors. The recently unveiled Radeon RX 460 based on this GPU should come with 4GB of GDDR5 memory paired up with a 128-bit memory interface. The Radeon RX 460 targets casual and MOBA gamers and should provide decent competition to the Geforce GTX 950 as both have a TDP of below 75W and do not need additional PCIe power connectors.
According to earlier leaked benchmarks, AMD’s Polaris architecture packs quite a punch considering both its price and TDP so AMD just might have a chance to get a much needed rebound in the market share.
Courtesy-Fud
Micron Announces 3D NAND Based SSDs
Micron has announced its first client- and OEM-oriented solid-state drives based on 3D NAND, the Micron 1100 and Micron 2100 series.
The Micron 1100 SSD is a more mainstream oriented SSD that will be based on Marvell’s 88SS1074 controller and Micron’s 384Gb 32-layer TLC NAND. Using a SATA 6Gbps interface and available in M.2 and 2.5-inch form-factors, the Micron 1100 should replace Micron’s mainstream M600 series, based on 16nm MLC NAND.
The Micron 1100 SSD will be available in 256GB, 512GB, 1TB and 2TB capacities. It will offer sequential performance of up to 530MB/s for read and up to 500MB/s for write with random 4K performance of up to 92K for read and up to 83K IOPS for write. With such performance, it is obvious that the Micron 1100 series will target mainstream market and be a budget SSD.
The Micron 2100 is an M.2 PCIe NVMe SSD that is actually Micron’s first client oriented PCIe SSD and also the first PCIe SSD based on 3D NAND. Unfortuantely, Micron did not finalize the precise specifications so we still do not have precise performance numbers but it will be available in capacities reaching 1TB.
The Micron 1100 is expected to hit mass production in July so we should expect some of the first drives by the end of the next month. The Micron 2100 will be coming by the end of summer.
Courtesy-Fud
Will HMB 2.0 GPUs Show Up This Year?
Our well-placed industry sources have told us that we should not expect to see the HMB 2.0 based GPUs shipping anytime soon. Nvidia Pascal and AMD Polaris 10 / 11 will stick with GDDR5 memory for the time being.
The 2nd generation High Bandwidth Memory (HBM 2.0) for high-end GPUs might happen in very late Q4 2016 but realistically it probably won’t ship until 2017 in any volume.
The first card that we expect supporting this feature might be the Greenland, a card that AMD might end up calling Vega. Even according Radeon Technology Group’s official GPU roadmap, Vega / Greenland now look like a 2017 product, or at very best, late 2016 card. Nvidia might make the HBM 2.0 version of the Titan card, but we don’t expect to see a Geforce GTX based on Pascal GPU and HBM 2.0 coming to the market this year.
We managed to talk to some of the memory manufactures and they told us that HBM 2.0 is very limited in supply, and limited supply makes things expensive.
It seems that GPUs of 2016, including the new AMD Polaris and the new Geforce, will be stuck with GDDR5 and in best case scenario with GDDR5X from Micron. The word on the street is that both Geforce GTX based on Pascal and AMD/RTG’s Polaris 10 / Ellesmere and Polaris 11 / Baffin might launch at Computex during last days of May or early June 2016.
Courtesy-Fud
Samsung Shows Off The BGA SSD
April 4, 2016 by admin
Filed under Around The Net
Comments Off on Samsung Shows Off The BGA SSD
During Samsung’s 2016 SSD Forum in Japan, the company took the wraps off its first ever ball-grid array (BGA) solid state disk for mobile devices, the PM971. This particular SSD aims to replace module-based M.2 drives in the 2-in-1 hybrid PC market. The company is claiming it will offer improved thermals, up to 10-percent more battery life and a reduction in vertical storage height for OEMs, product designers and system manufacturers.
The Samsung PM971 built using the company’s Photon controller and runs MLC 3D V-NAND (contrary to the picture above, PC Watch claims it is actually 3-bits per cell). The drive will be available in 128GB, 256GB and 512GB storage capacities and will feature sequential reads up to 1,500MB/s, sequential writes up to 600MB/s, random reads up to 190,000 IOPS and random writes up to 150,000 IOPS.In general, SSDs with BGA packaging are considerably smaller than those using the M.2 form factor, and Intel has claimed that using a PCI-E BGA SSD could allow an increase in battery size by around 10-percent compared to using an M.2 2260 SSD (with GPIO using 1.8v power rail instead of 3.3v), lower thermals than M.2 (from BGA ball conduction to motherboard instead of through M.2 mounting screws), and a vertical height savings of 0.5mm to 1.5mm in notebook devices.
The nice thing about BGA SSDs is that they are “complete” storage solutions and integrate NAND flash memory, the NAND controller and DRAM all into a single package. Currently, there are several BGA M.2 form factors being proposed that will make single-chip SSDs a reality sooner than later as the result of a collaboration between HP, Intel, Lenovo, Micron, SanDisk, Seagate and Toshiba. The four BGA SSD packages proposed are Type 1620, Type 2024, Type 2228 and Type 2828, ranging anywhere between 16 x 20 millimeters and 28 x 28 millimeters with up to 2-millimeter vertical height. It is currently unknown whether the Samsung PM971 adopts any of these proposed BGA M.2 standards.
Based on the demonstration at the 2016 Samsung SSD Forum in Japan, the PM971 offers decent performance thanks to a PCI-E 3.0 x4 interface and the company’s new Photon controller. According to the PC Watch website, the drive is physically smaller than an SD card and Samsung expects device manufacturers and OEMs to begin adoption in the second half of 2016 or the first half of 2017.
Courtesy-Fud
Samsung Goes 4GB HBM
Samsung has begun mass producing what it calls the industry’s first 4GB DRAM package based on the second-generation High Bandwidth Memory (HBM) 2 interface.
Samsung’s new HBM solution will be used in high-performance computing (HPC), advanced graphics, network systems and enterprise servers, and is said to offer DRAM performance that is “seven times faster than the current DRAM performance limit”.
This will apparently allow faster responsiveness for high-end computing tasks including parallel computing, graphics rendering and machine learning.
“By mass producing next-generation HBM2 DRAM, we can contribute much more to the rapid adoption of next-generation HPC systems by global IT companies,” said Samsung Electronics’ SVP of memory marketing, Sewon Chun.
“Also, in using our 3D memory technology here, we can more proactively cope with the multifaceted needs of global IT, while at the same time strengthening the foundation for future growth of the DRAM market.”
The 4GB HBM2 DRAM, which uses Samsung’s 20nm process technology and advanced HBM chip design, is specifically aimed at next-generation HPC systems and graphics cards.
“The 4GB HBM2 package is created by stacking a buffer die at the bottom and four 8Gb core dies on top. These are then vertically interconnected by TSV holes and microbumps,” explained Samsung.
“A single 8Gb HBM2 die contains over 5,000 TSV holes, which is more than 36 times that of an 8Gb TSV DDR4 die, offering a dramatic improvement in data transmission performance compared to typical wire-bonding based packages.”
Samsung’s new DRAM package features 256GBps of bandwidth, which is double that of an HBM1 DRAM package. This is equivalent to a more than seven-fold increase over the 36GBps bandwidth of a 4Gb GDDR5 DRAM chip, which has the fastest data speed per pin (9Gbps) among currently manufactured DRAM chips.
The firm’s 4GB HBM2 also enables enhanced power efficiency by doubling the bandwidth per watt over a 4Gb GDDR5-based solution, and embeds error-correcting code functionality to offer high reliability.
Samsung plans to produce an 8GB HBM2 DRAM package this year, and by integrating this into graphics cards the firm believes designers will be able to save more than 95 percent of space compared with using GDDR5 DRAM. This, Samsung said, will “offer more optimal solutions for compact devices that require high-level graphics computing capabilities”.
Samsung will increase production volume of its HBM2 DRAM over the course of the year to meet anticipated growth in market demand for network systems and servers. The firm will also expand its line-up of HBM2 DRAM solutions in a bid to “stay ahead in the high-performance computing market”.
Courtesy-TheInq
AMD Goes Polaris
AMD has shown off its upcoming next-generation Polaris GPU architecture at CES 2016 in Las Vegas.
Based on the firm’s fourth generation Graphics Core Next (GCN) architecture and built using a 14nm FinFET fabrication process, the upcoming architecture is a big jump from the current 28nm process.
AMD said that it expects shipments of Polaris GPUs to begin in mid-2016, offering improvements such as HDR monitor support and better performance-per-watt.
The much smaller 14nm FinFET process means that Polaris will deliver “a remarkable generational jump in power efficiency”, according to AMD, offering fluid frame rates in graphics, gaming, virtual reality and multimedia applications running on small form-factor thin and light computer designs.
“Our new Polaris architecture showcases significant advances in performance, power efficiency and features,” said AMD president and CEO Lisa Su. “2016 will be a very exciting year for Radeon fans driven by our Polaris architecture, Radeon Software Crimson Edition and a host of other innovations in the pipeline from our Radeon Technologies Group.”
The Polaris architecture features AMD’s fourth-generation GCN architecture, a next-generation display engine with support for HDMI 2.0a and DisplayPort 1.3, and next-generation multimedia features including 4K h.265 encoding and decoding.
GCN enables gamers to experience high-performance video games with Mantle, a tool for alleviating CPU bottlenecks such as API overhead and inefficient multi-threading. Mantle, which is basically AMD’s answer to Microsoft’s Direct X, enables improvements in graphics processing performance. In the past, AMD has claimed that Kaveri teamed with Mantle to enable it to offer built-in Radeon dual graphics to provide performance boosts ranging from 49 percent to 108 percent.
The new GPUs are being sampled to OEMs at the moment and we can expect them to appear in products by mid-2016, AMD said. Once they are in the market, we can expect to see much thinner form factors in devices thanks to the much smaller 14nm chip process.
Courtesy-TheInq
Will GDDR5 Rule In 2016
AMD over-hyped the new High Bandwidth Memory standard and now the second generation HBM 2.0 is coming in 2016. However it looks like most of GPUs shipped in this year will still rely on the older GDDR5.
Most of the entry level, mainstream and even performance graphics cards from both Nvidia and AMD will rely on the GDDR5. This memory has been with us since 2007 but it has dramatically increased in speed. The memory chip has shrunken from 60nm in 2007 to 20nm in 2015 making higher clocks and lower voltage possible.
Some of the big boys, including Samsung and Micron, have started producing 8 Gb GDDR5 chips that will enable cards with 1GB memory per chip. The GTX 980 TI has 12 chips with 4 Gb support (512MB per chip) while Radeon Fury X comes with four HMB 1.0 chips supporting 1GB per chip at much higher bandwidth. Geforce Titan X has 24 chips with 512MB each, making the total amount of memory to 12GB.
The next generation cards will get 12GB memory with 12 GDDR5 memory chips or 24GB with 24 chips. Most of the mainstream and performance cards will come with much less memory.
Only a few high end cards such as Greenland high end FinFET solution from AMD and a Geforce version of Pascal will come with the more expensive and much faster HMB 2.0 memory.
GDDR6 is arriving in 2016 at least at Micron and the company promises a much higher bandwidth compared to the GDDR5. So there will be a few choices.
Source-http://www.thegurureview.net/computing-category/will-gddr5-rule-in-2016.html