Particle Accelerator Put On A Chip
Researchers at the Stanford Linear Accelerator (SLAC) National Accelerator Laboratory have demonstrated a “particle accelerator on a chip”.
The Stanford University facility believes that the tiny particle accelerator has applications in science and medicine. A series of the miniature accelerators 100 feet long potentially could be more powerful than SLAC’s existing two mile long linear accelerator, despite each little segment being a glass chip smaller than a single grain of rice.
In a statement, experiment leader Joel England of SLAC said, “We still have a number of challenges before this technology becomes practical for real-world use, but eventually it would substantially reduce the size and cost of future high-energy particle colliders for exploring the world of fundamental particles and forces.”
At a practical level the accelerator could power tiny portable X-ray scanners used for treating military casualties in the field, as well as for use in security operations in airports and a wide range of scientific research.
Before we get too excited, it is worth pointing out that at the moment there is no compact way to get electrons up to the speed that the accelerator can work with, so at this stage, we have a two mile long machine with a tiny working part, but this is a major leap forward toward finding an alternative to microwaves in particle accelerators and making the process more portable.
Stanford University professor and principal investigator Robert Byer added, “Our ultimate goal for this structure is [one] billion electron volts per meter, and we’re already one-third of the way in our first experiment.”
We hope that this could also lead to the ability to create wormholes into other galaxies. But we doubt it.
MIT Develops Inflatable Antenna
September 17, 2013 by admin
Filed under Around The Net
Comments Off on MIT Develops Inflatable Antenna
Satellites the size of shoe boxes, which are expected to one day allow researchers to explore space more efficiently, will soon have greater range.
MIT researchers have built and tested an inflatable antenna that can fold into such a satellite, then inflate in orbit to enable long range communications — from seven times the distance possible today.
The technology will let the small satellites, called CubeSats, move further into space and send valuable information to scientists back on earth.
“With this antenna, you could transmit from the moon, and even farther than that,” said Alessandra Babuscia, a researcher on the inflatable antenna team at MIT, in a statement. “This antenna is one of the cheapest and most economical solutions to the problem of communication. But all this research builds a set of options to allow the spacecraft … to fly in deep space.”
The MIT effort comes as engineers at the University of Michigan work on ways to propel such small spacecraft into interplanetary space. The team is building a plasma thruster that could fit in a 10-centimeter space and push a small satellite-bearing spacecraft into deep space.
The university researchers using superheated plasma that would push through a magnetic field to propel a CubeSat.
The MIT researchers are seeking to solve the communications problems and enable far-afield CubeSats to send data to and receive instructions from Earth.
The CubeSat devices cannot support radio dishes that are used today to let spacecraft communicate when far from Earth’s orbit.
The inflatable antennas significantly amplifies radio signals, allowing a CubeSat to transmit data back to Earth at a higher rate, according to the university.
MIT engineers have built two prototype antennae, each a meter wide, out of Mylar, which is a polyester film known for its strength and use as an electric insulator. One antenna was a cone shape, while the other looks more like a cylinder when inflated. Each fits into a 10-cubic-centimeter space within a CubeSat.
Each prototype contains a few grams of benzoic acid, which can be converted to a gas to inflate the antenna, MIT noted.
In testing, the cylindrical antenna performed “slightly better” than the cone shaped device, transmitting data 10 times faster, and seven times farther than existing CubeSat antennae.
‘Monster’ Solar Storm Erupts On the Sun (Video)
February 27, 2011 by admin
Filed under Around The Net
Comments Off on ‘Monster’ Solar Storm Erupts On the Sun (Video)
Sun makes a major eruption and NASA captures it.