nVidia Finally Goes 20nm
For much of the year we were under the impression that the second generation Maxwell will end up as a 20nm chip.
First-generation Maxwell ended up being branded as Geforce GTX 750 and GTX 750 TI and the second generation Maxwell launched a few days ago as the GTX 980 and Geforce GTX 970, with both cards based on the 28nm GM204 GPU.
This is actually quite good news as it turns out that Nvidia managed to optimize power and performance of the chip and make it one of the most efficient chips manufactured in 28nm.
Nvidia 20nm chips coming in 2015
Still, people keep asking about the transition to 20nm and it turns out that the first 20nm chip from Nvidia in 20nm will be a mobile SoC.
The first Nvidia 20nm chip will be a mobile part, most likely Erista a successor of Parker (Tegra K1).
Our sources didn’t mention the exact codename, but it turns out that Nvidia wants to launch a mobile chip first and then it plans to expand into 20nm with graphics.
Unfortunately we don’t have any specifics to report.
AMD 20nm SoC in 2015
AMD is doing the same thing as its first 20nm chip, codenamed Nolan, is an entry level APU targeting tablet and detachable markets.
There is a strong possibility that Apple and Qualcomm simply bought a lot of 20nm capacity for their mobile modem chips and what was left was simply too expensive to make economic sense for big GPUs.
20nm will drive the voltage down while it will allow higher clocks, more transistors per square millimeter and it will overall enable better chips.
Just remember Nvidia world’s first quad-core Tegra 3 in 40nm was rather hot and making a quad core in 28nm enabled higher performance and significantly better battery life. The same was true of other mobile chips of the era.
We expect similar leap from going down to 20nm in 2015 and Erista might be the first chip to make it to 20nm. A Maxwell derived architecture 20nm will deliver even more efficiency. Needless to say AMD plans to launch 20nm GPUs next year as well.
It looks like Nvidia’s 16nm FinFET Parker processor, based on the Denver CPU architecture and Maxwell graphics won’t appear before 2016.
Is AMD’s FreeSync Coming In 2015?
Last week in San Francisco we spent some time with Richard Huddy, AMD’s Chief gaming scientist to get a glimpse what is going on in the world of AMD graphics. Of course we touched on Mantle, AMD’s future in graphics and FreeSync, the company’s alternative to Nvidia G-Sync.
Now a week later AMD is ready to announce that MStar, Novatek and Realtek scaler manufactures are getting ready with DisplayPort Adaptive-Sync and AMD’s Project FreeSync. They should be done by end of the year with monitors shipping in Q1 2015.
FreeSync will prevent frame tearing as the graphic card often pushes more (or fewer) frames than the monitor can draw and this lack of synchronisation creates quite annoying frame tears.
FreeSync will allow Radeon gamers to synchronize display refresh rates and GPU frame rates to enable tearing and stutter-free gaming along with low input latency. We still do not have the specs or names of the new monitors, but we can confirm that they will use robust DisplayPort receivers from MStar, Novatek and Realtek in 144Hz panels with QHD 2560×1440 and UHD 3840×2160 panels up to 60 Hz.
It took Nvidia quite some time to get G-Sync monitors off the ground and we expect to see the first 4K G-Sync monitors shipping shortly, while QHD 2560×1440 ones have been available for a few months. Since these are gaming monitors with a 144Hz refresh rate they don’t come cheap, but they are nice to look at and should accompany a high end graphic card such as Geforce GTX 980 or a few of them.
Radeon lovers will get FreeSync, but monitors will take a bit more time since AMD promises Project FreeSync-ready monitors through a media review program in 1Q 15 and doesn’t actually tells us much about retail / etail availability.
FreeSync Only For New AMD Chips
AMD has explained that its new FreeSync technology will only work in new silicon.
FreeSync is AMD’s initiative to enable variable-refresh display technology for smoother in-game animation and was supposed to give Nvidia’s G-Sync technology a good kicking.
G-Sync has already resulted in some top production gaming monitors like the Asus ROG Swift PG278Q.
However AMD said that the only the newest GPU silicon from AMD will support FreeSync displays. Specifically, the Hawaii GPU that drives the Radeon R9 290 and 290X will be compatible with FreeSync monitors, as will the Tonga GPU in the Radeon R9 285.
The Bonaire chip that powers the Radeon R7 260X and HD 7790 cards could support FreeSync, but that is not certain yet.
Now that would be OK if the current Radeon lineup is populated by a mix of newer and older GPU technology. What AMD is saying is that there are some brand-new graphics cards selling today that will not support FreeSync monitors when they arrive.
The list of products that won’t work with FreeSync includes anything based on the older revision of the GCN architecture used in chips like Tahiti and Pitcairn.
So if you have splashed out on the the Radeon R9 280, 280X, 270, and 270X hoping that it will be FreeSync-capable you will be out of luck. Nor will any older Radeons in the HD 7000 and 8000 series.
Nvidia’s G-Sync works with GeForce graphics cards based on the Kepler architecture, which include a broad swath of current and past products dating back to the GeForce GTX 600 series.
AMD’s Carrizo Goes Mobile Only
AMD’s upcoming Carrizo APU might not make it to the desktop market at all.
According to Italian tech site bitsandchips.it, citing industry sources, AMD plans to limit Carrizo to mobile parts. Furthermore the source claims Carrizo will not support DDR4 memory. We cannot confirm or deny the report at this time.
If the rumours turn out to be true, AMD will not have a new desktop platform next year. Bear in mind that Intel is doing the exact same thing by bringing 14nm silicon to mobile rather than desktop. AMD’s roadmap previously pointed to a desktop Carrizo launch in 2015.
AMD’s FM2+ socket and Kaveri derivatives would have to hold the line until 2016. The same goes for the AM3+ platform, which should also last until 2016.
Not much is known about Carrizo at the moment, hence we are not in a position to say much about the latest rumours. AMD’s first 20nm APU will be Nolan, but Carrizo will be the first 20nm big core. AMD confirmed a number of delays in a roadmap leaked last August.
The company recently confirmed its first 20nm products are coming next year. In all likelihood AMD will be selling 32nm, 28nm and 20nm parts next year.
ARM Launches Juno
ARM has announced two programs to assist Android’s ascent into the 64-bit architecture market.
The first of those is Linaro, a port of the Android Open Source Project to the 64-bit ARMv8-A architecture. ARM said the port was done on a development board codenamed “Juno”, which is the second initiative to help Android reach the 64-bit market.
The Juno hardware development platform includes a system on chip (SoC) powered by a quad-core ARM Cortex-A53 CPU and dual-core ARM Cortex-A57 CPU in an ARM big.little processing configuration.
Juno is said to be an “open, vendor neutral ARMv8 development platform” that will also feature an ARM Mali-T624 graphics processor.
Alongside the news of the 64-bit initiatives, ARM also announced that Actions Semiconductor of China signed a license agreement for the 64-bit ARM Cortex-A50 processor family.
“Actions provides SoC solutions for portable consumer electronics,” ARM said. “With this IP license, Actions will develop 64-bit SoC solutions targeting the tablet and over-the-counter (OTT) set top box markets.”
The announcements from ARM come at an appropriate time, as it was only last week that Google announced the latest version of its Android mobile operating system, Android L, which comes with support for 64-bit processors. ARM’s latest developments mean that Android developers are likely to take advantage of them in the push to take Android to the 64-bit market.
Despite speculation that it would launch as Android 5.0 Lollipop, Google outed its next software iteration on Wednesday last week as simply Android L, touting the oddly-named iteration as “the largest update to the operating system yet”.
Intel Links Up With Rockchip
Intel has joined forces with Chinese chip design firm Rockchip to develop next generation processors for the tablet market based on Intel Atom core technology and integrating 3G broadband communications.
Under the terms of the agreement, Intel and Fuzhou Rockchip Electronics (Rockchip) will work together on an Intel branded mobile system on chip (SoC) processor with the intention of enabling a range of entry-level Android tablets.
The chip is expected to ship in the first half of 2015, according to Intel, and will be based on a quad-core Atom processor design integrated with Intel’s 3G modem technology, which the firm gained through its acquisition of Infineon Technologies in 2010.
Rockchip, which is expected to contribute to the integrated graphics technology, will also help Intel bring the product to market faster than might otherwise be the case. The firm is a leading fabless semiconductor design company and already develops mobile SoCs, although its present designs are largely focused around the ARM architecture.
The agreement builds on announcements Intel made at an investor relations day last year, where chief executive Brian Krzanich disclosed the Intel Sofia family, of which the latest chip will form part, and conceded that the chipmaker needed to become more agile in order to gain traction in entry-level markets.
“The strategic agreement with Rockchip is an example of Intel’s commitment to take pragmatic and different approaches to grow our presence in the global mobile market by more quickly delivering a broader portfolio of Intel architecture and communications technology solutions,” Krzanich said.
With this announcement, the Intel Sofia family comprises three products, which are not shipping yet.
A dual-core 3G version is slated for the fourth quarter this year, the quad-core 3G version is due in the first half of 2015, and a version with 4G/LTE communication is also due in the first half of next year.
GPUs Down In Q1
June 5, 2014 by admin
Filed under Around The Net
Comments Off on GPUs Down In Q1
According to Jon Peddie Research (JPR), shipments of discrete graphics cards were down in the first quarter of the year. This is in line with seasonal trends, as the market cools down after the holiday season.
The sequential drop was 6.7 percent, which was still better than the overall desktop PC market, which slumped 9 percent. However, on a year-to-year basis add-in-board (AIB) shipments were down 0.8 percent. PC sales were down 1.1 percent.
Nvidia still controls two thirds of the market
Total AIB shipments in Q1 were just 14 million units. AMD and Nvidia both saw their shipments decrease 6.6 percent, so their market share did not change much.
Nvidia controls an estimated 65 percent of the market, up from 64.2 percent last year. AMD’s market share in Q1 was 35 percent, down from 35.6 percent a year ago.
The overall volume remains weak and in the long run things could get even worse, as on-die integrated graphics have already taken a big toll on sales of entry level discrete cards. As integrated GPUs become even faster, they are likely to cannibalize the low end market even further.
JPR points out that the AIB market peaked in 1999, with 114 million units shipped. Last year saw only 65 million units and the stagnant trend is likely to continue this year.
It’s not all bad news for AIBs
Although the slump in discrete GPU shipments is hurting AMD and NV hardware partners, JPR offers a rather encouraging outlook.
It points out that graphics cards are one of the most powerful, essential and exciting components in the PC market today. PC gaming is hardly dead, in fact it is going through what can only be described as a small renaissance. PCs will offer 4K/UHD gaming years ahead of consoles and the Steam Machine concept is looking good, too.
The compute market is another driver, as JPR points out:
“The technology is entering into major new markets like supercomputers, remote workstations, and simulators almost on a daily basis. It would be little exaggeration to say that the AIB resembles the 800-pound gorilla in the room.”
The AIB market is quite a bit less colourful and eventful than it was back in the day, but at least AIBs still have a lot on their hands and they are trying to tap new markets.
Can MediTek Win With Amazon?
According to the Taiwan Economic Daily, the chipmaker will supply SoCs for upcoming Amazon tablets. Details are sketchy and it is unclear whether MediaTek has landed an order for all Kindle Fire SKUs or just one of them. The paper claims MediaTek will start shipping the chips later this year, but we have no way of confirming or denying the report.
The chip in question appears to be the MT8135. It is a mid-range big.LITTLE part announced last year and it features two Cortex A15 and two Cortex A7 CPU cores. The GPU comes from Imagination and it’s the relatively fresh PowerVR G6200. The GPU is capable of churning out 83.2 GFLOPS at 650MHz, depending on the configuration of course.
It sounds like a decent all-round SoC, with a substantially faster GPU than previous MediaTek offerings in the same segment, which were powered by venerable SGX 54x and Mali 400/450 GPUs.
Information is limited and we can’t say for sure whether or not MediaTek actually landed the deal, or whether the deal includes more than a single Kindle Fire SKU. If true, it is a big coup for the Taiwan-based chipmaker, as Amazon ships up to two million Kindle tablets each quarter.
It would also help MediaTek’s ambitious tablet plans. The company hopes to double shipments of tablet-centric SoC products this year.
ARM To Focus On 64-bit SoC
ARM announced its first 64-bit cores a while ago and SoC makers have already rolled out several 64-bit designs. However, apart from Apple nobody has consumer oriented 64-bit ARM devices on the market just yet. They are slowly starting to show up and ARM says the transition to 64-bit parts is accelerating. However, the first wave of 64-bit ARM parts is not going after the high-end market.
Is 64-bit support on entry-level SoCs just a gimmick?
This trend raises a rather obvious question – are low end ARMv8 parts just a marketing gimmick, or do they really offer a significant performance gain? There is no straight answer at this point. It will depend on Google and chipmakers themselves, as well as phonemakers.
Qualcomm announced its first 64-bit part late last year. The Snapdragon 410 won’t turn many heads. It is going after $150 phones and it is based on Cortex A53 cores. It also has LTE, which makes it rather interesting.
MediaTek is taking a similar approach. Its quad-core MT6732 and octa-core MT6752 parts are Cortex A53 designs, too. Both sport LTE connectivity.
Qualcomm and MediaTek appear to be going after the same market – $100 to $150 phones with LTE and quad-core 64-bit stickers on the box. Marketers should like the idea, as they’re getting a few good buzzwords for entry-level gear.
However, we still don’t know much about their real-world performance. Don’t expect anything spectacular. The Cortex A53 is basically the 64-bit successor to the frugal Cortex A7. The A53 has a bit more cache, 40-bit physical addresses and it ends up a bit faster than the A7, but not by much. ARM says the A7 delivers 1.9DMIPS/MHz per core, while the A53 churns out 2.3DMIPS/MHz. That puts it in the ballpark of the good old Cortex A9. The first consumer oriented quad-core Cortex A9 part was Nvidia’s Tegra 3, so in theory a Cortex A53 quad-core could be as fast as a Tegra 3 clock-for-clock, but at 28nm we should see somewhat higher clocks, along with better graphics.
That’s not bad for $100 to $150 devices. LTE support is just the icing on the cake. Keep in mind that the Cortex A7 is ARM’s most efficient 32-bit core, hence we expect nothing less from the Cortex A53.
The Cortex A57 conundrum
Speaking to CNET’s Brooke Crothers, ARM executive vice president of corporate strategy Tom Lantzsch said the company was surprised by strong demand for 64-bit designs.
“Certainly, we’ve had big uptick in demand for mobile 64-bit products. We’ve seen this with our [Cortex] A53, a high-performance 64-bit mobile processor,” Lantzch told CNET.
He said ARM has been surprised by the pace of 64-bit adoption, with mobile parts coming from Qualcomm, MediaTek and Marvell. He said he hopes to see 64-bit phones by Christmas, although we suspect the first entry-level products will appear much sooner.
Lantzsch points out that even 32-bit code will run more efficiently on 64-bit ARMv8 parts. As software support improves, the performance gains will become more evident.
But where does this leave the Cortex A57? It is supposed to replace the Cortex A15, which had a few teething problems. Like the A15 it is a relatively big core. The A15 was simply too big and impractical on the 32nm node. On 28nm it’s better, but not perfect. It is still a huge core and its market success has been limited.
As a result, it’s highly unlikely that we will see any 28nm Cortex A57 parts. Qualcomm’s upcoming Snapdragon 810 is the first consumer oriented A57 SoC. It is a 20nm design and it is coming later this year, just in time for Christmas as ARM puts it. However, although the Snapdragon 810 will be ready by the end of the year, the first phones based on the new chip are expected to ship in early 2015.
While we will be able to buy 64-bit Android (and possibly Windows Phone) devices before Christmas, most if not all of them will be based on the A53. That’s not necessarily a bad thing. Consumers won’t have to spend $500 to get a 64-bit ARM device, so the user base could start growing long before high-end parts start shipping, thus forcing developers and Google to speed up 64-bit development.
If rumors are to be believed, Google is doing just that and it is not shying away from small 64-bit cores. The search giant is reportedly developing a $100 Nexus phone for emerging markets. It is said to be based on MediaTek’s MT6732 clocked at 1.5GHz. Sounds interesting, provided the rumour turns out to be true.
Can AMD Lead?
He is one of the drivers behind AMD’s transformation, with the ultimate goal of turning the chipmaker into a new organization that is not so heavily dependent on the PC market. John confirmed that the company is on the road to achieve a huge milestone in its transition plans, generating approximately 50 percent of its revenue from the non-PC market by the end of 2015.
The time for the talk could not been better, as the market reacted positively to AMD’s Q1 earnings and at press time the stock was at $4.14, up $0.45 or 12.06 percent which is a huge jump for a tech stock. Keep in mind that many tech stocks have been bearish over the last four weeks, with several massive selloffs, especially in software and internet companies.
AMD fighting back in CPU space
We covered numerous topics from desktops, notebooks and tablets strategy all the way to the server, semi-custom APUs and of course the graphics market.
John said that leadership in the graphics sector is critical in AMD’s strategy, none more so than in the PC space where AMD wants to use their performance APU’s to compete with Intel’s Core i3 and Core i5 processors in the lucrative mainstream market. This is what AMD wants to address with Kaveri and to some extent with Kabini APUs.
AMD has high hopes for its upcoming server parts where they just launched their first ARM 64-bit product for the dense server space, where AMD expects to be a leader. On the other side of the spectrum the frugal AM1 platform launched a few weeks ago and it is getting very positive reviews. The first Kaveri parts have been on sale for a while, although we would like to see more desktop SKUs, not to mention mobile Kaveri APUs, including ULV variants.
Semi-custom APUs are blurring the line between AMD’s traditional product classes, but sales appear to be good, with more than 12 million Xbox One and PlayStation 4 consoles in the wild.
Phenomenal discrete GPU sales
Byrne is quietly confident when it comes to the GPU market, having just seen very strong sales in the performance and enthusiast high end segments of the market. The surge was driven by competitive products, great games and bundles, even with the cryptocurrency craze which was more or less a fluke for AMD.
The company remains committed to the GPU market, and expects to bring the successful R9 / R7 architecture further down into the mainstream price points in 2014, with similar traction. This means AMD will continue the fight against Nvidia in desktop and notebook GPU markets, while at the same time taking on Intel on desktop and notebook side with new APUs.
AMD thinks that the mix of great gaming performance, HSA, Mantle, Open CL, compute performance and some cool technologies like facial recognition can boost its position in the GPU market. This is just one part of the magic potion that is really starting to work for AMD, but it’s good to know that when it comes to graphics and gaming, AMD will stay committed to these markets in 2014 and beyond.
Enthusiasts need not worry. Although the company is reinventing itself and pursuing non-PC revenue streams, AMD will still be there to cater to their needs.