Micron Announces 3D NAND Based SSDs
Micron has announced its first client- and OEM-oriented solid-state drives based on 3D NAND, the Micron 1100 and Micron 2100 series.
The Micron 1100 SSD is a more mainstream oriented SSD that will be based on Marvell’s 88SS1074 controller and Micron’s 384Gb 32-layer TLC NAND. Using a SATA 6Gbps interface and available in M.2 and 2.5-inch form-factors, the Micron 1100 should replace Micron’s mainstream M600 series, based on 16nm MLC NAND.
The Micron 1100 SSD will be available in 256GB, 512GB, 1TB and 2TB capacities. It will offer sequential performance of up to 530MB/s for read and up to 500MB/s for write with random 4K performance of up to 92K for read and up to 83K IOPS for write. With such performance, it is obvious that the Micron 1100 series will target mainstream market and be a budget SSD.
The Micron 2100 is an M.2 PCIe NVMe SSD that is actually Micron’s first client oriented PCIe SSD and also the first PCIe SSD based on 3D NAND. Unfortuantely, Micron did not finalize the precise specifications so we still do not have precise performance numbers but it will be available in capacities reaching 1TB.
The Micron 1100 is expected to hit mass production in July so we should expect some of the first drives by the end of the next month. The Micron 2100 will be coming by the end of summer.
Courtesy-Fud
Samsung Shows Off The BGA SSD
April 4, 2016 by admin
Filed under Around The Net
Comments Off on Samsung Shows Off The BGA SSD
During Samsung’s 2016 SSD Forum in Japan, the company took the wraps off its first ever ball-grid array (BGA) solid state disk for mobile devices, the PM971. This particular SSD aims to replace module-based M.2 drives in the 2-in-1 hybrid PC market. The company is claiming it will offer improved thermals, up to 10-percent more battery life and a reduction in vertical storage height for OEMs, product designers and system manufacturers.
The Samsung PM971 built using the company’s Photon controller and runs MLC 3D V-NAND (contrary to the picture above, PC Watch claims it is actually 3-bits per cell). The drive will be available in 128GB, 256GB and 512GB storage capacities and will feature sequential reads up to 1,500MB/s, sequential writes up to 600MB/s, random reads up to 190,000 IOPS and random writes up to 150,000 IOPS.In general, SSDs with BGA packaging are considerably smaller than those using the M.2 form factor, and Intel has claimed that using a PCI-E BGA SSD could allow an increase in battery size by around 10-percent compared to using an M.2 2260 SSD (with GPIO using 1.8v power rail instead of 3.3v), lower thermals than M.2 (from BGA ball conduction to motherboard instead of through M.2 mounting screws), and a vertical height savings of 0.5mm to 1.5mm in notebook devices.
The nice thing about BGA SSDs is that they are “complete” storage solutions and integrate NAND flash memory, the NAND controller and DRAM all into a single package. Currently, there are several BGA M.2 form factors being proposed that will make single-chip SSDs a reality sooner than later as the result of a collaboration between HP, Intel, Lenovo, Micron, SanDisk, Seagate and Toshiba. The four BGA SSD packages proposed are Type 1620, Type 2024, Type 2228 and Type 2828, ranging anywhere between 16 x 20 millimeters and 28 x 28 millimeters with up to 2-millimeter vertical height. It is currently unknown whether the Samsung PM971 adopts any of these proposed BGA M.2 standards.
Based on the demonstration at the 2016 Samsung SSD Forum in Japan, the PM971 offers decent performance thanks to a PCI-E 3.0 x4 interface and the company’s new Photon controller. According to the PC Watch website, the drive is physically smaller than an SD card and Samsung expects device manufacturers and OEMs to begin adoption in the second half of 2016 or the first half of 2017.
Courtesy-Fud