Intel Talks More About Skylake
A new Intel roadmap suggests the first Broadwell LGA parts will launch in Q2, while Skylake-S parts will come in Q3.
The roadmap was published by PC Online and points to two Broadwell LGA launches this quarter – the Core i7-5775C and Core i5-5675C. These two parts will be joined by a total of four Skylake-S products in Q3, the Core i7-6700K, Core i7-6700, Core i5-6600K, Core i5-6600 and the Core i5-6500.
Both Skylake-S and Broadwell LGA will replace the current crop of Haswell parts, including Devil’s Canyon products. However, Broadwell LGA sits one tier above Skylake-S and Haswell-based products.
Starting in Q4, we should see more Broadwell LGA parts, but we don’t have any names yet. In the first quarter of 2016, we can also expect new Skylake-S parts.
Speaking of 2016, Intel plans to unleash the Broadwell-E in the first quarter of 2016. Little is known about Broadwell-E, but the new 14nm flagship is expected to sport eight cores. Clocks remain unknown, although the 14nm node promises substantial gains.
MidiaTek Developing Two SoC’s for Tablets
Comments Off on MidiaTek Developing Two SoC’s for Tablets
MediaTek is working on two new tablet SoCs and one of them is rumored to be a $5 design.
The MT8735 looks like a tablet version of Mediatek’s smartphone SoCs based on ARM’s Cortex-A53 core. The chip can also handle LTE (FDD and TDD), along with 3G and dual-band WiFi. This means it should end up in affordable data-enabled tablets. There’s no word on the clocks or GPU.
The MT8163 is supposed to be the company’s entry-level tablet part. Priced at around $5, the chip does not appear to feature a modem – it only has WiFi and Bluetooth on board. GPS is still there, but that’s about it.
Once again, details are sketchy so we don’t know much about performance. However, this is an entry-level part, so we don’t expect miracles. It will have to slug it out with Alwinner’s $5 tablet SoC, which was announced a couple of months ago
According to a slide published by Mobile Dad, the MT8753 will be available later this month, but we have no timeframe for the MT8163.
But there’s nothing to see here as far as Torvalds is concerned. It’s just another day in the office. And all this in “Back To The Future II” year, as well.
Meanwhile under the bonnet, the community are already slaving away on Linux 4.1 which is expected to be a far more extensive release, with 100 code changes already committed within hours of Torvalds announcement of 4.0.
But there is already some discord in the ranks, with concerns that some of the changes to 4.1 will be damaging to the x86 compatibility of the kernel. But let’s let them sort that out amongst themselves.
After all, an anti-troll dispute resolution code was recently added to the Linux kernel in an effort to stop some of the more outspoken trolling that takes place, not least from Torvalds himself, according to some members of the community.
Did AMD Commit Fraud?
AMD must face claims that it committed securities fraud by hiding problems with the bungled 2011 launch of Llano that eventually led to a $100 million write-down, a US court has decided.
According to Techeye US District Judge Yvonne Gonzales Rogers said plaintiffs had a case that AMD officials misled them by stating in the spring of 2011 and will have to face a full trial.
The lawsuit was over the Llano chip, which AMD had claimed was “the most impressive processor in history.”
AMD originally said that the product launch would happen in the fourth quarter of 2010, sales of the Llano were delayed because of problems at the company’s chip manufacturing plant.
The then Chief Financial Officer Thomas Seifert told analysts on an April 2011 conference call that problems with chip production for the Llano were in the past, and that the company would have ample product for a launch in the second quarter.
Press officers for AMD continued to insist that there were no problems with supply, concealing the fact that it was only shipping Llanos to top-tier computer manufacturers because it did not have enough chips.
By the time AMD ramped up Llano shipments in late 2011, no one wanted them any more, leading to an inventory glut.
AMD disclosed in October 2012 that it was writing down $100 million of Llano inventory as not shiftable.
Shares fell nearly 74 percent from a peak of $8.35 in March 2012 to a low of $2.18 in October 2012 when the market learned the extent of the problems with the Llano launch.
Intel Sends Braswell SoC To Partners
Intel announced that it is now shipping the Bay Trail system on a chip (SoC) successor codenamed Braswell to OEM partners.
Announced almost exactly a year ago at Intel’s Developer Forum in Beijing, Braswell is a more powerful version of Bay Trail running on the 14nm fab process, designed to power low-cost devices like Chromebooks and budget PCs.
The chip maker said that devices will hit the market sometime in late summer or autumn.
“We expect Braswell-based systems to be available in the market for the back to school 2015 selling season,” an Intel representative told The INQUIRER. “Specific dates and options will be announced by our OEM partners.”
That’s all Intel will give us for now, but we were told that full details regarding the upcoming chip will be revealed at IDF in Shenzhen next week.
Braswell was expected to arrive at the end of 2014 when it was originally unveiled last year.
Kirk Skaugen, general manager of Intel’s PC Client group, said that it will replace Bay Trail as part of the Atom line, and will feature in over 20 Chromebook designs.
“Last year, we had only four designs on Chrome. Today I can announce that we will have over 20 designs on Chrome,” said Skaugen at the time.
Intel recently announced another 14nm chip, the Atom x range, previously codenamed Cherry Trail, although this will be focused on tablets rather than the value PC market segment and Chromebooks like Braswell.
In terms of power, Braswell is likely to fit snuggly above the Atom x5 and x7 Cherry Trail SoCs and beneath the firm’s recently announced 5th-generation Core products, previously codenamed Broadwell.
Unveiled at Mobile World Congress earlier this year, Intel’s Atom x5 and x7 chips, previously codenamed Cherry Trail, are also updates to the previous Bay Trail Atom line-up, being the first Intel Atom SoCs on 14nm.
These higher-powered SoCs are designed to bring improved 3D performance to mainstream premium handheld devices running full versions of Windows and Android, such as 7in to 10.1in tablets and 2-in-1 hybrid laptops priced at around $119 to $499.
For example, Microsoft quietly announced on Tuesday that the upcoming Surface 3 tablet-laptop hybrid will be powered by an Intel Atom x7. The device is priced at $500.
Intel Debuts The N3000 Series SoC
Intel has launched Intel N3000 series systems on a chip (SoCs), which will kill off Bay Trail-M and Bay Trail-D SoCs on the desktop and mobile PCs.
CPU World also has spotted some other chips which have been revealed to the world.
Intel has also launched desktop and mobile Core i3 and Pentium microprocessors. New mobile models are Pentium 3825U, Core i3-5015U and i3-5020U. These ones are based on Broadwell 14nm.
Core i3-5015U and i3-5020U are dual-cores with Hyper-Threading technology, HD 5500 graphics and ultra low 15 Watt TDP. The processors run at 2.1 GHz and 2.2 GHz. This is 100 MHz higher than the i3-5005U and i3-5010U models, that were launched three months ago.
The i3-5015U and i3-5020U chips offer a 50 MHz higher graphics boost. Official prices of these SKUs are $275 and $281.
The Pentium 3825U incorporates a couple of enhancements on the older Pentium 3805U. It supports Hyper-Threading that allows it to process twice as many threads. It also has base and maximum graphics frequencies increased to 300 MHz and 850 MHz.
The 3805U and 3825U operate at 1.9 GHz and have 2 MB L2 cache. The 3825U processor is rated at 15 Watt TDP, and priced at $161.
Will Intel Challenge nVidia In The GPU Space?
Comments Off on Will Intel Challenge nVidia In The GPU Space?
Intel has released details of its next -generation Xeon Phi processor and it is starting to look like Intel is gunning for a chunk of Nvidia’s GPU market.
According to a briefing from Avinash Sodani, Knights Landing Chief Architect at Intel, a product update by Hugo Saleh, Marketing Director of Intel’s Technical Computing Group, an interactive technical Q&A and a lab demo of a Knights Landing system running on an Intel reference-design system, Nvidia could be Intel’s target.
Knights Landing and prior Phi products are leagues apart and more flexible for a wider range of uses. Unlike more specialized processors, Intel describes Knights Landing as taking a “holistic approach” to new breakthrough applications.
The current generation Phi design, which operates as a coprocessor, Knights Landing incorporates x86 cores and can directly boot and run standard operating systems and application code without recompilation.
The test system had socketed CPU and memory modules was running a stock Linux distribution. A modified version of the Atom Silvermont x86 cores formed a Knights Landing ’tile’ which was the chip’s basic design unit consisting of dual x86 and vector execution units alongside cache memory and intra-tile mesh communication circuitry.
Each multi-chip package includes a processor with 30 or more tiles and eight high-speed memory chips.
Intel said the on-package memory, totaling 16GB, is made by Micron with custom I/O circuitry and might be a variant of Micron’s announced, but not yet shipping Hybrid Memory Cube.
The high-speed memory is similar to the DDR5 devices used on GPUs like Nvidia’s Tesla.
It looks like Intel saw that Nvidia was making great leaps into the high performance arena with its GPU and thought “I’ll be having some of that.”
The internals of a GPU and Xeon Phi are different, but share common ideas.
Nvidia has a big head start. It has already announced the price and availability of a Titan X development box designed for researchers exploring GPU applications to deep learning. Intel has not done that yet for Knights Landing systems.
But Phi is also a hybrid that includes dozens of full-fledged 64-bit x86 cores. This could make it better at some parallelizable application categories that use vector calculations.
IBM Debuts New Mainframe
IBM has started shipping its all-new first z13 mainframe computer.
IBM has high hopes the upgraded model will generate solid sales based not only on usual customer patterns but its design focus aimed at helping them cope with expanding mobile usage, analysis of data, upgrading security and doing more “cloud” remote computing.
Mainframes are still a major part of the Systems and Technology Group at IBM, which overall contributed 10.8 percent of IBM’s total 2014 revenues of $92.8 billion. But the z Systems and their predecessors also generate revenue from software, leasing and maintenance and thus have a greater financial impact on IBM’s overall picture.
The new mainframe’s claim to fame is to use simultaneous multi-threading (SMT) to execute two instruction streams (or threads) on a processor core which delivers more throughput for Linux on z Systems and IBM z Integrated Information Processor (zIIP) eligible workloads.
There is also a single Instruction Multiple Data (SIMD), a vector processing model providing instruction level parallelism, to speed workloads such as analytics and mathematical modeling. All this means COBOL 5.2 and PL/I 4.5 exploit SIMD and improved floating point enhancements to deliver improved performance over and above that provided by the faster processor.
Its on chip cryptographic and compression coprocessors receive a performance boost improving both general processors and Integrated Facility for Linux (IFL) cryptographic performance and allowing compression of more data, helping tosave disk space and reducing data transfer time.
There is also a redesigned cache architecture, using eDRAM technology to provide twice as much second level cache and substantially more third and fourth level caches compared to the zEC12. Bigger and faster caches help to avoid untimely swaps and memory waits while maximisng the throughput of concurrent workload Tom McPherson, vice president of z System development, said that the new model was not just about microprocessors, though this model has many eight-core chips in it. Since everything has to be cooled by a combination of water and air, semiconductor scaling is slowing down, so “you have to get the value by optimizing.
The first real numbers on how the z13 is selling won’t be public until comments are made in IBM’s first-quarter report, due out in mid-April, when a little more than three weeks’ worth of billings will flow into it.
The company’s fiscal fortunes have sagged, with mixed reviews from both analysts and the blogosphere. Much of that revolves around IBM’s lag in cloud services. IBM is positioning the mainframe as a prime cloud server, one of the systems that is actually what cloud computing goes to and runs on.
Intel Shows Off The Xeon SoC
Intel has announced details of its first Xeon system on chip (SoC) which will become the new the Xeon D 1500 processor family.
Although it is being touted as a server, storage and compute applications chip at the “network edge”, word on the street is that it could be under the bonnet of robots during the next apocalypse.
The Xeon D SoCs use the more useful bits of the E3 and Atom SoCs along with 14nm Broadwell core architecture. The Xeon D chip is expected to bring 3.4x better performance per watt than previous Xeon chips.
Lisa Spelman, Intel’s general manager for the Data Centre Products Group, lifted the kimono on the eight-core 2GHz Xeon D 1540 and the four-core 2.2GHz Xeon D 1520, both running at 45W. It also features integrated I/O and networking to slot into microservers and appliances for networking and storage, the firm said.
The chips are also being touted for industrial automation and may see life powering robots on factory floors. Since simple robots can run on basic, low-power processors, there’s no reason why faster chips can’t be plugged into advanced robots for more complex tasks, according to Intel.
Will Intel Release Skylake This Year?
Intel has confirmed that it will release Core M processors this year based on its new Skylake chip design.
Intel CEO Brian Krzanich said at the Goldman Sachs Technology and Internet conference that the the new Core M chips are due in the second half of the year and will also extend battery life in tablets, hybrids, and laptop PCs.
The new chips will mean much thinner tablets and mobile PCs which will make Apple’s Air look decidedly portly. Intel’s Core M chips, introduced last year, are based on the Broadwell but the Skylake chips should also improve graphics and general application performance.
The Skylake chips will be able to run Windows 10, as well as Google’s Chrome and Android OSes, Krzanich said. But most existing Core M systems run Windows 8.1, and Intel has said device makers haven’t shown a lot of interest in other OSes. So most Skylake devices will probably run Windows 10. Chipzilla is expected to give more details about the new Core M chips in June at the Computex trade show in Taipei.
Skylake systems will also support the second generation of Intel’s RealSense 3D camera technology, which uses a depth sensor to create 3D scans of objects, and which can also be used for gesture and facial recognition. The hope is that the combination of Skylake and a new Windows operating system will give the PC industry a much needed boost.
In related news, Intel announced that socketed Broadwell processors will be available in time for Windows 10.
AMD Goes Virtual With Liquid VR
AMD Liquid VR is not a retail product – it is an initiative to develop and deliver the best Virtual Reality (VR) experience in the industry.
AMD Liquid VR was announced at the Game Developers Conference in San Francisco, and the company describes it is a “set of innovative technologies focused on enabling exceptional VR content development” for hardware based on AMD silicon.
Developers will soon get access to the LiquidVR SDK, which will help them address numerous issues associated with VR development.
Platform and software rather than hardware
If you were expecting to see a sexy AMD VR headset with a killer spec, the announcement may be disappointing. However, if you are a “what’s under the bonnet” kind of geek, there are a few interesting highlights.
AMD has put a lot of effort into minimising motion-to-photon latency, which should not only help improve the experience, but also keep you from experiencing motion sickness, or hurling over that new carpet that really ties the room together.
Headline features of LiquidVR SDK 1.0 include:
Async Shaders for smooth head-tracking enabling Hardware-Accelerated Time Warp, a technology that uses updated information on a user’s head position after a frame has been rendered and then warps the image to reflect the new viewpoint just before sending it to a VR headset, effectively minimizing latency between when a user turns their head and what appears on screen.
Affinity Multi-GPU for scalable rendering, a technology that allows multiple GPUs to work together to improve frame rates in VR applications by allowing them to assign work to run on specific GPUs. Each GPU renders the viewpoint from one eye, and then composites the outputs into a single stereo 3D image. With this technology, multi-GPU configurations become ideal for high performance VR rendering, delivering high frame rates for a smoother experience.
Latest data latch for smooth head-tracking, a programming mechanism that helps get head tracking data from the head-mounted display to the GPU as quickly as possible by binding data as close to real-time as possible, practically eliminating any API overhead and removing latency.
Direct-to-display for intuitively attaching VR headsets, to deliver a seamless plug-and-play virtual reality experience from an AMD Radeon™ graphics card to a connected VR headset, while enabling features such as booting directly to the display or using extended display features within Windows.
You can grab the full AMD LiquidVR presentation here. (pdf)
What’s next for LiquidVR?
It all depends on what you were expecting, and what the rest of the industry does. AMD hopes LiquidVR will be compatible with a broad range of VR devices. LiquidVR will allow hardware makers to implement AMD technology in their products with relative ease, enabling 100Hz refresh rates, the use of individual GPUs per each eye and so on.
To a certain extent, you can think of LiquidVR as FreeSync for VR kit.
Oculus CEO Brendan Irbe said achieving presence in a virtual world is one of the most important elements needed to deliver a good user experience.
He explained where AMD comes in:
“We’re excited to have AMD working with us on their part of the latency equation, introducing support for new features like asynchronous timewarp and late latching, and compatibility improvements that ensure that Oculus’ users have a great experience on AMD hardware.”
Raja Koduri, corporate vice president, Visual Computing, AMD, said content, comfort and compatibility are the cornerstones of AMD’s focus on VR.
AMD’s resident graphics guru said:
“With LiquidVR we’re collaborating with the ecosystem to unlock solutions to some of the toughest challenges in VR and giving the keys to developers of VR content so that they can bring exceptional new experiences to life.”
A picture is worth a thousand words, so here’s 3300 frames of AMD’s virtual reality vision.