Can MediaTek Take On Qualcomm?
While Qualcomm’s 20nm Snapdragon 810 SoC might be the star of upcoming flagship smartphones, it appears that MediaTek has its own horse for the race, the octa-core MT6795.
Spotted by GforGames site, in a GeekBench test results and running inside an unknown smartphone, MediaTek’s MT6795 managed to score 886 points in the single-core test and 4536 points in the multi-core test. These results were enough to put it neck to neck with the mighty Qualcomm Snapdragon 810 SoC tested in the LG G Flex 2, which scored 1144 points in the single-core and 4345 in the multi-core test. While it did outrun the MT6795 in the single-core test, the multi-core test was clearly not kind on the Snapdragon 810.
The unknown device was running on Android Lollipop OS and packed 3GB of RAM, which might gave the MT6795 an edge over the LG G Flex 2.
MediaTek’s octa-core MT6795 was announced last year and while we are yet to see some of the first design wins, recent rumors suggested that it could be powering Meizu’s MX5, HTC’s Desire A55 and some other high-end smartphones. The MediaTek MT6795 is a 64-bit octa-core SoC clocked at up to 2.2GHz, with four Cortex-A57 cores and four Cortex-A53 cores. It packs PowerVR G6200 graphics, supports LPDDR3 memory and can handle 2K displays at up to 120Hz.
As we are just a few days from Mobile World Congress (MWC) 2015 which will kick off in Barcelona on March 2nd, we are quite sure that we will see more info as well as more benchmarks as a single benchmark running on an unknown smartphone might not be the best representation of performance, it does show that MediaTek certainly has a good chip and can compete with Qualcomm and Samsung.
Intel Gives Exascale A Boost
Intel’s exascale computing efforts have received a boost with the extension of the company’s research collaboration with the Barcelona Supercomputing Center.
Begun in 2011 and now extended to September 2017, the Intel-BSC work is currently looking at scalability issues with parallel applications.
Karl Solchenbach, Intel’s director, Innovation Pathfinding Architecture Group in Europe said it was important to improve scalability of threaded applications on many core nodes through the OmpSs programming model.
The collaboration has developed a methodology to measure these effects separately. “An automatic tool not only provides a detailed analysis of performance inhibitors, but also it allows a projection to a higher number of nodes,” says Solchenbach.
BSC has been making HPC tools and given Intel an instrumentation package (Extrae), a performance data browser (Paraver), and a simulator (Dimemas) to play with.
Charlie Wuischpard, VP & GM High Performance Computing at Intel said that the Barcelona work is pretty big scale for Chipzilla.
“A major part of what we’re proposing going forward is work on many core architecture. Our roadmap is to continue to add more and more cores all the time.”
“Our Knights Landing product that is coming out will have 60 or more cores running at a slightly slower clock speed but give you vastly better performance,” he said.
AMD’s Carrizo Coming In The Second Quarter
Comments Off on AMD’s Carrizo Coming In The Second Quarter
AMD released its earnings today and one cool question came up about the upcoming Carrizo mobile APU.
Lisa SU, the new AMD President and CEO, told MKM Partners analyst Ian Ing that Carrizo is coming in Q2 2015.
This is a great news and AMD’s Senior VP and outgoing general manager of computing and graphics group John Byrne already shared a few details about his excitement about Carrizo.
There are two Carrizo parts, one for big notebooks and All in Ones called Carrizo and a scaled down version called Carrizo L. We expect that the slower Carrizo-L is first to come but, Lisa was not specific. Carrizo-L is based on Puma+ CPU cores with AMD Radeon R-Series GCN graphics is intended for mainstream configurations with Carrizo targeting the higher performance notebooks.
Usually when a company says that something is coming in Q2 2015 that points to a Computex launch and this Taipei based tradeshow starts on June 2 2015. We strongly believe that the first Carrizo products will showcased at or around this date.
Lisa also pointed out that AMD has “significantly improved performance in battery life in Carrizo.” This is definitely good news, as this was one of the main issues with AMD APUs in the notebook space.
Lisa also said that AMD expects Carrizo to be beneficial for embedded and other businesses as well. If only it could have come a bit earlier, so let’s hope AMD can get enough significant design wins with Carrizo. AMD has a lot of work to do in order to get its products faster to market, to catch up with Intel on power and performance or simply to come up with innovative devices that will define its future. This is what we think Lisa is there for but in chip design, it simply takes time.
AMD Headed To The Facial Recognition Space
Comments Off on AMD Headed To The Facial Recognition Space
AMD has developed facial recognition technology to enable users to organize and search video clips based on the people featured in them.
AMD executive Richard Gayle demonstrated to Tom’s Guide how AMD Content Manager, uses facial recognition to browse through a group of local videos to find specific faces.
There is an index that displays the people’s faces that have been detected throughout the video clips.
The user can edit the names of the people as well as add keyword tags to help improve future searches for specific people.
For instance, if you are searching for videos that feature one person, you can click on his or her respective face to pull up the corresponding videos.
Additionally, if you want to narrow a search to a specific person combined with a keyword tag, you can drag the face icon and click on the desired keyword.
Once you click on the video you wish to view, a player appears in the right windowpane, along with a timeline displayed at the bottom with a list of all the people who appear in the video.
The timeline is separated into various coloured boxes to mark the exact moment in the video when each person first appears on screen, so you do not have to watch the entire video to see the bit you want.
The application also has facial recognition capabilities that allow users to do some basic editing, such as compiling a single montage video of any individual or individuals.
While this is pretty good technology, it probably does not have any major use yet on its own.
Gayle said it is unlikely that AMD will release Content Manager in its current form but will license it to OEMs that are able to rebrand the application before offering it on their respective systems.
He claimed that only AMD processors have sufficient power to operate the application, because of the processor’s ability to have the CPU, GPU and memory controller work closely together.
AMD’s Fiji GPU Goes High Bandwidth
New evidence coming from two LinkedIn profiles of AMD employees suggest that AMD’s upcoming Radeon R9 380X graphics card which is expected to be based on the Fiji GPU will actually use High-Bandwidth Memory.
Spotted by a member of 3D Center forums, the two LinkedIn profiles mention both the R9 380X by name as well as describe it as the world’s firts 300W 2.5D discrete GPU SoC using stacked die High-Bandwidth Memory and silicon interposer. While the source of the leak is quite strange, these are more reliable than just rumors.
The first in line is the profile of Ilana Shternshain, an ASIC Physical Design Engineer, which has been behind the Playstation 4 SoC, Radeon R9 290X and R9 380X, which is described as the “largest in ‘King of the hill’ line of products.”
The second LinkedIn profile is the one from AMD’s System Architect Manager, Linglan Zhang, which was involved in developing “the world’s first 300W 2.5D discrete GPU SOC using stacked die High Bandwidth Memory and silicon interposer.”
Earlier rumors suggest that AMD might launch the new graphics cards early this year as the company is under heavy pressure from Nvidia’s recently released, as well as the upcoming, Maxwell-based graphics cards.
Intel Investing Big In Isreal
Intel is investing a further $550 million in Israel, more specifically in the upgrade of its Fab 28 in Kiryat Gat.
According to Israel21c, this will bring the total scope of Intel investments in Israel to over $6 billion since 2006. The Kiryat Gat facility is likely to be one of the first Intel 10nm fabs.
Israeli Ministry of Economy official Ziva Eger said the investment will help create thousands of jobs and reinforce the country’s standing as a world leader in technology.
“The agreement signed today between the Industrial Cooperation Authority and Intel is another expression of Intel’s contribution by way of its purchase of equipment, new technologies and Israeli products developed together with Intel,” said CEO of Intel Israel Maxine Fassberg.
Fab 28 currently churns out 22nm silicon for Intel. The fab was passed over for the 14nm upgrade. A source familiar with the matter told us that Israel competes with Ireland for every node upgrade.
“We lost 14nm to Ireland and won 10nm,” the source said.
Israel is currently in a better position to offer incentives and subsidies for such investments, as Ireland’s ‘business-friendly’ tax policies are being scrutinized by the European Union.
Intel is expected to launch the first 10nm CPU in 2016, followed by 7nm parts a couple of years later.
Intel To Add Broadwell To NUC Series
Comments Off on Intel To Add Broadwell To NUC Series
Intel is planning to update its rather successful NUC (Next Unit of Computing) series and as you can expect, they will come with Broadwell CPUs inside.
Intel isn’t hiding the external design of the new cases and there is a dominant yellow connector at the front of the new NUC, and this one should be providing charging power even when the device is turned off.
The board comes with either M2 storage or single SATA and there will be two different designs one exclusively for M2 drive and the second taller that will be able to take 2.5 inch SSD or HDD as well.
We will probably learn more details at CES 2015 that is about to start in less than three weeks from now, but the Broadwell in this small form factor will get a speed boost and some future prove technologies such as M2 SSD support.
We are running Core i5 4200 powered NUC with Windows 10 and it really works great powered by 240GB Kingston mS200 mSata SSD and Impact SO DIMM memory. These machines takes less than half an hour to assemble and boot into windows, including Windows 10 and make a perfect choice for the lovers of quiet computing.
The new version will obviously run at least slightly faster than the one we are testing and the marketing is excluding about “the one with the yellow USB connector”.
Samsung Finally Starts 14nm FinFET
A company insider has spilled the beans in Korea, claiming that Samsung has started Apple A9 production in 14nm FinFET.
The A9 is the next generation SoC for Apple iPhone and iPad products and it is manufactured on the Samsung – GlobalFoundries 14nm FinFET manufacturing process. In the other news, Samsung’s Ki-nam, president of the company’s semiconductor business and head of System LSI business has confirmed that the company started production of 14-nanometre FinFET chips.
The report mentions Austin as a possible site for Apple products but we wonder if the GlobalFoundries Fab 8 in New York State could become one of the partners for the 14nm FinFET manufacturing. Samsung didn’t officially reveal the client for the 14nm FinFET, but Apple is the most obvious candidate, while we expect to see 14 / 16nm FinFET graphics chips from AMD and Nvidia but most likely in the latter half of 2015 at best.
Qualcomm is likely to announce new LTE modem based on 14nm FinFET and the flagship SoC Snapdragon 810 is a 20nm chip. Qualcomm is manufacturing its 810 chips as we speak to meet demand for flagship Android phones coming in Q1 2015. Flagship Samsung, HTC and LG phones among others are likely to use Snapdragon 810 as a replacement for this year’s Snapdragon 801, a high end chip that ended up in millions of high-end phones.
Samsung / GlobalFoundries14nm FinFET process is 15 percent smaller, 20 percent faster, and 35 percent more power efficient compared to 20nm processors. This definitely sounds exiting and will bring more performance into phones, tablets, GPUs and will significantly decrease power consumption. The move from 28nm is long overdue.
We believe that Qualcomm’s LTE modem might be the first chip to officially come with this manufacturing process and Apple will probably take most of the 14nm production for an update in its tablets and phones scheduled for 2015.
Samsung Moves To Block nVidia
Samsung has moved to try and block the sales of Nvidia chips in the US.
Samsung has filed a complaint with the U.S. International Trade Commission as part of patent war which appears to have broken out between the two chipmakers. Samsung claims Nvidia infringed several of its chip-related patents and for making false claims about its products. This is effectively counter-suing after Nvidia filed a suit against the company in September making more or less the same charges.
Nvidia accused Samsung and rival Qualcomm of infringing patents on its graphics-processing unit (GPU). Samsung, which had filed the lawsuit in a US federal court on November 4, is seeking damages for deliberate infringement of several technical patents, including a few that govern the way semiconductors buffer and use data.
The ITC complaint also named computer-parts manufacturers Biostar Microtech and Elitegroup. These things run and run and usually wind up with a settlement where both sides agree to keep the details quiet. The ITC is often used as leverage in such cases because it deals with things a little quicker and a product embargo to the US can be seriously damage a company’s wealth.
Intel’s Cherry Trail Coming In 2015
Bay Trail was quite a big deal when it started shipping in late 2013.
It was a tablet chip that enabled great design wins such as the affordable Asus T100TA and even in late 2014 Asus used the platform to create the EeeBook X205, a $199 netbook.
Both of these designs are based on Intel’s Bay-Trail M processor, a year old 22nm quad-core processor based on the Silvermont design. Some machines that are coming with LTE, both netbooks and tablets and there will be new chip coming in 2015. It is called LTE Advanced XMM7360 chip and supports LTE Cat 10,3 CA up to 450 Mbits download and upload.
Intel will also offer Morrefield quad cores for machines with lower TDP ratings, especially tablets, and at some point in 2015 it will introduce its 14nm Airmont core based Cherry Trail processor. Cherry Trail based on 14nm Airmont core was originally expected in late 2014, but it got pushed towards middle of 2015.
Intel is clearly encountering more obstacles moving from the 22nm to the 14nm manufacturing process, but considering that most ARM competitors still have to start commercially shipping its 20nm SoCs in significant volumes, Intel still has a manufacturing node advantage. If only Intel had as many design wins to go along with its cutting edge fabs, as the company has been struggling to ship 40milion tablets in 2014, as promised.
Braxton will replace Cherry Trail in 2016. Braxton is a tock architecture, another 14nm design based on the quad-core Goldmont core. When it comes to the Performance Media Internet Device (MID) market Intel has another chip planned in 2016. It calls it SoFIA MID and the chip comes in intels 14nm manufacturing process.
Value and Entry markets for Media Internet Device (MID) and phones includes four new SoFIA parts, but with all these new and exciting chips Intel has to compete against some advanced chips coming on line in 2015, including the Qualcomm Snapdragon 810 20nm, Nvidia Erista and more affordable Mediatek solutions such as the MT6795 A53-based octa-core and its successor.