Syber Group
Toll Free : 855-568-TSTG(8784)
Subscribe To : Envelop Twitter Facebook Feed linkedin

Samsung And TSMC Battle It Out

February 4, 2016 by  
Filed under Computing

Comments Off on Samsung And TSMC Battle It Out

Samsung and TSMC are starting to slug it out introducing Gen.3 14 and 16-nano FinFET system semiconductor processes, but the cost could mean that smartphone makers shy away from the technology in the short term.

It is starting to look sales teams for the pair are each trying to show that they can use the technology to reduce the most electricity consumption and production costs.

In its yearly result for 2015, TSMC made an announcement that it is planning to enter mass-production system of chips produced by 16-nano FinFET Compact (FFC) process sometime during 1st quarter of this year. TSMC had finished developing 16-nano FFC process at the end of last year. During the announcement TSMC talked up the fact that its 16-nano FFC process focuses on reducing production cost more than before and implementing low electricity.

TSMC is apparently ready for mass-production of 16-nano FFC process sometime during 1st half of this year and secured Huawei’s affiliate called HiSilicon as its first customer.

HiSilicon’s Kirin 950 that is used for Huawei’s premium Smartphone called Mate 8 is produced by TSMC’s 16-nano FF process. Its A9 Chip, which is used for Apple’s iPhone 6S series, is mass-produced using the 16-nano FinFET Plus (FF+) process that was announced in early 2015. By adding FFC process, TSMC now has three 16-nano processors in action.

Samsung is not far behind it has mass-produced Gen.2 14-nano FinFET using a process called LPP (Low Power Plus). This has 15 per cent lower electricity consumption compared to Gen.1 14-nano process called LPE (Low Power Early).

Samsung Electronics’ 14-nano LPP process was seen in the Exynos 8 OCTA series that is used for Galaxy S7 and Qualcomm’s Snapdragon 820. But Samsung Electronics is also preparing for Gen.3 14-nano FinFET process.

Vice-President Bae Young-chang of Samsung’s LSI Business Department’s Strategy Marketing Team said it will use a process similar to the Gen.2 14-nano process.

Both Samsung and TSMC might have a few problems. It is not clear what the yields of these processes are and this might increase the production costs.

Even if Samsung Electronics and TSMC finish developing 10-nano process at the end of this year and enter mass-production system next year, but they will also have to upgrade their current 14 and 16-nano processes to make them more economic.

Even if 10-nano process is commercialized, there still will be many fabless businesses that will use 14 and 16-nano processes because they are cheaper. While we might see a few flagship phones using the higher priced chips, it might be that we will not see 10nm in the majority of phones for years.

 

Courtesy-Fud

AMD Goes Full Steam To Open-Source

December 30, 2015 by  
Filed under Computing

Comments Off on AMD Goes Full Steam To Open-Source

AMD and now RTG (Radeon Technologies Group) are involved in a major push to open source GPU resources.

According to Ars Technica Under the handle “GPUOpen” AMD is releasing a slew of open-source software and tools to give developers of games, heterogeneous applications, and HPC applications deeper access to the GPU and GPU resources.

In a statement AMD said that as a continuation of the strategy it started with Mantle, it is giving even more control of the GPU to developers.

“ As console developers have benefited from low-level access to the GPU, AMD wants to continue to bring this level of access to the PC space.”

The AMD GPUOpen initiative is meant to give developers the ability to use assets they’ve already made for console development. They will have direct access to GPU hardware, as well as access to a large collection of open source effects, tools, libraries and SDKs, which are being made available on GitHub under an MIT open-source license.

AMD wants GPUOpen will enable console-style development for PC games through this open source software initiative. It also includes an end-to-end open source compute infrastructure for cluster-based computing and a new Linux software and driver strategy

All this ties in with AMD’s Boltzmann Initiative and an HSA (Heterogeneous System Architecture) software suite that includes an HCC compiler for C++ development. This was supposed to open the field of programmers who can use HSA. A new HCC C++ compiler was set up to enable developers to more easily use discrete GPU hardware in heterogeneous systems.

It also allows developers to convert CUDA code to portable C++. According to AMD, internal testing shows that in many cases 90 percent or more of CUDA code can be automatically converted into C++ with the final 10 percent converted manually in the widely popular C++ language. An early access program for the “Boltzmann Initiative” tools is planned for Q1 2016.

AMD GPUOpen includes a new Linux driver model and runtime targeted at HPC Cluster-Class Computing. The headless Linux driver is supposed to handle high-performance computing needs with low latency compute dispatch and PCI Express data transfers, peer-to-peer GPU support, Remote Direct Memory Access (RDMA) from InfiniBand that interconnects directly to GPU memory and Large Single Memory Allocation support.

Courtesy-Fud

TSMC Goes Fan-Out Wafers

December 23, 2015 by  
Filed under Computing

Comments Off on TSMC Goes Fan-Out Wafers

TSMC is scheduled to move its integrated fan-out (InFO) wafer-level packaging technology to volume production in the second quarter of 2016.

Apparently the fruity cargo cult Apple has already signed up to adopt the technology, which means that the rest of the world’s press will probably notice.

According to the Commercial Times TSMC will have 85,000-100,000 wafers fabricated with the foundry’s in-house developed InFo packaging technology in the second quarter of 2016.

TSMC has disclosed its InFO packaging technology will be ready for mass production in 2016. Company president and co-CEO CC Wei remarked at an October 15 investors meeting that TSMC has completed construction of a new facility in Longtan, northern Taiwan.

TSMC’s InFo technology will be ready for volume production in the second quarter of 2016, according to Wei.

TSMC president and co-CEO Mark Liu disclosed the company is working on the second generation of its InFO technology for several projects on 10nm and 7nm process nodes.

Source-http://www.thegurureview.net/computing-category/tsmc-goes-fan-out-wafers.html

AMD Appears To Be Pushing It’s Boltzmann Plan

December 10, 2015 by  
Filed under Computing

Comments Off on AMD Appears To Be Pushing It’s Boltzmann Plan

Troubled chipmaker AMD is putting a lot of its limited investment money into the “Boltzmann Initiative” which is uses heterogeneous system architecture ability to harness both CPU and AMD GPU for compute efficiency through software.

VR-World says that stage one results are finished and where shown off this week at SC15. This included a Heterogeneous Compute Compiler (HCC); a headless Linux driver and HSA runtime infrastructure for cluster-class, High Performance Computing (HPC); and the Heterogeneous-compute Interface for Portability (HIP) tool for porting CUDA-based applications to C++ programming.

AMD hopes the tools will drive application performance from machine learning to molecular dynamics, and from oil and gas to visual effects and computer-generated imaging.

Jim Belak, co-lead of the US Department of Energy’s Exascale Co-design Center in Extreme Materials and senior computational materials scientist at Lawrence Livermore National Laboratory said that AMD’s Heterogeneous-compute Interface for Portability enables performance portability for the HPC community.

“The ability to take code that was written for one architecture and transfer it to another architecture without a negative impact on performance is extremely powerful. The work AMD is doing to produce a high-performance compiler that sits below high-level programming models enables researchers to concentrate on solving problems and publishing groundbreaking research rather than worrying about hardware-specific optimizations.”

The new AMD Boltzmann Initiative suite includes an HCC compiler for C++ development, greatly expanding the field of programmers who can leverage HSA.

The new HCC C++ compiler is a key tool in enabling developers to easily and efficiently apply the hardware resources in heterogeneous systems. The compiler offers more simplified development via single source execution, with both the CPU and GPU code in the same file.

The compiler automates the placement code that executes on both processing elements for maximum execution efficiency.

Source- http://www.thegurureview.net/computing-category/amd-appears-to-be-pushing-its-boltzmann-plan.html

GPU Shipments Appear To Be On The Rise

December 1, 2015 by  
Filed under Computing

Comments Off on GPU Shipments Appear To Be On The Rise

Beancounters at JPR have been adding up the numbers and dividing by their shoe size and worked out that GPU shipments are up for both Nvidia and AMD.

Over the last few months both have been busy with new releases. Nvidia has its GeForce GTX 950 and GTX 980 Ti, while AMD put its first HBM-powered cards in the Radeon R9 Fury X, Fury and the super-small R9 Nano into the shops.

According to JPR, overall GPU shipments are up quarter-over-quarter – with AMD’s overall GPU shipments up 15.8 per cent. But before AMD fanboys get all excited by a surprise return to form from AMD, JPR said that that NVIDIA “had an exceptionally strong quarter”. Nvidia saw an uptick of 21.3 per cent.

The PC market as a whole increased by 7.5 per cent quarter-over-quarter but decreased 9 per cent year-over-year. Nivida’s discrete GPU shipments were up 26.3 per cent according to JPR, while AMD’s discrete GPUs spiked by 33 per cent.

AMD’s mobile GPU shipments for notebooks increased by 17 per cent, while NVIDIA had 14 per cent.

Courtesy-http://www.thegurureview.net/computing-category/gpu-shipments-appear-to-be-on-the-rise.html

Will AMD’s Newest SoC Save The Company?

November 3, 2015 by  
Filed under Computing

Comments Off on Will AMD’s Newest SoC Save The Company?

The troubled chipmaker AMD thinks it is onto a winner with its new AMD Embedded R-Series SOC processors.

Designed for demanding embedded needs, the processors incorporate the newest AMD 64-bit x86 CPU core (“Excavator”), plus third-generation Graphics Core Next GPU architecture, and better power management for reduced energy consumption.

AMD tells us that combined, these chips provide industry-leading graphics performance and key embedded features for next-generation designs. The SOC architecture enables simplified, small form factor board and system designs from AMD customers and a number of third party development platform providers.

What AMD brings to the party is its graphics and multimedia performance, including capability for hardware-accelerated decode of 4K video playback and support for the latest DDR4 memory.
Jim McGregor, principal analyst, TIRIAS Research said that AMDs push into x86 embedded platforms is paying off with an increasing number of customers and applications.

“There is a need for immersive graphics, high-quality visualization, and parallel computing in an increasing number of embedded applications. Across these fronts, the AMD Embedded R-Series SOC is a very compelling solution.”

Scott Aylor, corporate vice president and general manager, AMD Embedded Solutions said that his outfit’s AMD Embedded R-Series SOC is a strong match for these needs in a variety of industries including digital signage, retail signage, medical imaging, electronic gaming machines, media storage, and communications and networking.

“The platform offers a strong value proposition for this next generation of high-performance, low-power embedded designs.”

The new AMD Embedded R-Series SOCs offer 22 percent improved GPU performance when compared to the 2nd Generation AMD Embedded R-Series APU2 and a 58 percent advantage against the Intel Broadwell Core i7 when running graphics-intensive benchmarks.

AMD released some of the specs for its integrated AMD Radeon graphics including:

Up to eight compute units4 and two rendering blocks

GPU clock speeds up to 800MHz resulting in 819 GFLOPS

•DirectX 12 support

Fully HSA Enabled

The AMD Embedded R-Series SOC was architected with embedded customers in mind and includes features such as industrial temperature support, dual-channel DDR3 or DDR4 support with ECC (Error Correction Code), Secure Boot, and a broad range of processor options.

It has a configurable thermal design power (cTDP) allows designers to adjust the TDPs from 12W to 35W in 1W increments for greater flexibility.

The SOC also has a 35 percent reduced footprint when compared to the 2nd Generation AMD Embedded R-Series APU, making it an excellent choice for small form factor applications.

AMD said that the range is the first embedded processor with dual-channel 64-bit DDR4 or DDR3 with Error-Correction Code (ECC), with speeds up to DDR4-2400 and DDR3-2133, and support for 1.2V DDR4 and 1.5V/1.35V DDR3.

Its dedicated AMD Secure Processor supports secure boot with AMD Hardware Validated Boot (HVB) and initiates trusted boot environment before starting x86 cores
It has a high-performance Integrated FCH featuring PCIe Gen3 USB3.0, SATA3, SD, GPIO, SPI, I2S, I2C, and UART

The AMD Embedded R-Series SOC provides industry-leading ten-year longevity of supply. The processors support Microsoft Windows 7, Windows Embedded 7 and 8 Standard, Windows 8.1, Windows 10, and AMD’s all-open Linux driver including Mentor Embedded Linux from Mentor Graphics and their Sourcery CodeBench IDE development tools.

It will be interesting to see if AMD can make up the ground it has lost on PCs and higher ticket items. Most of the company still appears to be in a holding pattern until Zen arrives.

Courtesy-http://www.thegurureview.net/computing-category/will-amds-newest-soc-save-the-company.html

Is AMD Losing Top Scientist To nVidia?

October 27, 2015 by  
Filed under Computing

Comments Off on Is AMD Losing Top Scientist To nVidia?

AMD is reeling after the high profile exit of one its top CPU brains Phil to rival Nvidia.

The outfit has been going through hell lately. Last month AMD ace CPU architect Jim Keller stepped away from the company after completing his work on Zen.

Rogers was one of AMD’s high-ranking technology and engineering corporate fellows, and been responsible for helping to develop the software ecosystem behind AMD’s heterogeneous computing products and the Heterogeneous System Architecture.

He was a public figure for AMD and active on the software development and evangelism side, frequently presenting the latest HSA tech and announcements for AMD at keynotes and conferences.

While he is not the only person working on the software side of HSA at AMD, Rogers’ role in its development is important. Rogers was a major contributor to the HSA Foundation, helping to initially found it in 2012. He served as the Foundation’s president until he left AMD.

It seems his defection was kept secret, and took place sometime this quarter and did not manage to leak.

According to his LinkedIn profile Phil Rogers is now Nvidia’s “Chief Software Architect – Compute Server” which is similar to what he was doing over at AMD. Nvidia is not a member of the HSA Foundation, but they are currently gearing up for the launch of the Pascal GPU family, which has some features that overlap well with Phil Rogers’ expertise.

Pascal’s NVLink CPU & GPU interconnect would allow tightly coupled heterogonous computing similar to what AMD has been working on. It makes a fair bit of sense for Nvidia to bring over a heterogeneous compute specialist makes a great deal of sense.

Rogers’ departure from AMD will have to be mentioned on the earnings call on the 15th. AMD’s Gregory Stoner will probably replace him. Stoner is AMD’s current Senior Director of Compute Solutions Technology and long-time Vice President of the HSA Foundation.

Source-http://www.thegurureview.net/computing-category/is-amd-losing-top-scientist-to-nvidia.html

IBM and Intel Going GoFlo SOI

October 23, 2015 by  
Filed under Computing

Comments Off on IBM and Intel Going GoFlo SOI

Soitec’s CEO and board chairman has raised an eyebrow or two when he said that the iPhone 6s has multiple RF chips built on silicon-on-insulator (SOI) substrates and that Intel and IBM are using the tech for their silicon photonics push.

According to EETimes Paul Boudre, who claimed that SOI is already being used by Apple and Intel even though neither company is broadcasting it. SOI appears to be on track to major market penetration even while the rest of the industry is talking FinFETs.

GlobalFoundries general manager Rutger Wijburg told the SEMICON Europa 2015 that his outfit’s 22-nanometer “22FDX” SOI platform delivers FinFET-like performance but at a much lower power point and at a cost comparable to 28-nanometer planar technologies.

The 300-millimeter $250 million FD-SOI foundry here in the “Silicon Saxony” area of Germany, builds on 20 years of GlobalFoundries’ investments in Europe’s largest semiconductor fabs.

GlobalFoundries said it will extend Moore’s Law by using fully-deleted silicon-on-insulator (FD-SOI) transistors on wafers bought from Soitec.

Many had thought that if GloFlo’s FD-SOI gamble paid off then it would be a while before FinFET would have a serious rival. But Boudre’s claims suggests that SOI is already being used.

Customers like Intel and OEMs supplying fully-deleted silicon-on-insulator (FD-SOI) RF transistors to Apple proves that SOI and Soitec are past the cusp of the growth curve, destined to ramp up exponentially.

The problem for Soitec is no one is really talking about it. Chipzilla is committed to the FinFET, because it is higher performance than FD-SOI, even though it is higher power too.
Boudre said that it was supplying SOI wafers to Intel for other applications that don’t require high-performance. For instance, our wafers are very good for their silicon photonics projects.

Apple is already using SOI for several radio frequency (RF) chips in their front-ends, because they use 20-times less power. The iPhone is still using gallium arsenide (GaAs) for its power amplifier (PA) because it needs the high-power device for good connections, but for other RF front-end chips, and in fact for all the chips that they want to keep “always on,” the lower power consumption of FD-SOI is pushing the smartphone makers to Soitec, Boudre said.

SOI wafers cost three-times as much as bulk silicon but the cost per die is less because of the simplified processing steps including fewer masks.

Normally GPS chips run on 0.8 volts and consume over 20 milliamps, so they must be turned off most of the time. But when they are made with SOI wafers, they can run on 0.4 volts and consume only 1 milliamp. The mobile device to leave them on all the time and new and more accurate location sensing and new kinds of location-based applications can be developed.

What is amusing then is that Intel’s reason for going with FinFETs was that SOI wafers were too expensive but it did find a use for it.

GlobalFoundries’ Saxony fab will offer four varieties of its 22FDX process.

FDX-ulp for the mainstream and low-cost smartphone market. This will use body-biasing to beat FinFETs on power, but equal them in performance.

FDX-uhp for networking applications using analogue integration to match FinFETs while minimizing energy consumption

FDX-ull for ultra-low power required by wearables and Internet of Things applications. This will have a 1 picoamp per micron leakage

DDX-rfa for radio frequency (RF) analogue applications delivering 50 percent lower power and reduced system costs for LTE-A cellular transceivers, high-order multiple-input/multiple-output (MIMO) WiFi combo chips and millimeter wave radar.

Courtesy-http://www.thegurureview.net/computing-category/ibm-and-intel-going-goflo-soi.html

Can Sumsung Compete With Intel?

October 19, 2015 by  
Filed under Computing

Comments Off on Can Sumsung Compete With Intel?

Samsung is not doing that well in smartphones. To be fair, no one is, but Samsung has the ability to become something much more interesting – it could replace AMD as Intel’s rival.

Actually AMD is pretty cheap right now and if it was not for the pesky arrangement that prevents AMD’s buyer getting its x86 technology then it would have been snapped up a while ago. But with, or without AMD, Samsung could still make a good fist of chipmaking if it put its mind to it. At the moment its chipmaking efforts are one of the better things on its balance sheet.

Its high-margin semiconductor business is more than making up for the shortfall in smartphones. Selling chips to rivals would be more lucrative if they were not spinning their own mobile business. The products it have are worth $11.7 billion this year, more than half the company’s total.

Growing demand for chips and thin-film displays is probably the main reason that Samsung now expects operating profit to have reached $6.3 billion. After applying Samsung’s 16 percent corporate tax rate, its chip division is likely to bring in net income of slightly less than $10 billion.

To put this figure into perspective Intel expects to earn $10.5 billion in this year. Samsung is also sitting on a $48 billion net cash pile. Samsung could see its handset and consumer electronics business as a sideline and just focus on bumping off Intel.

The two sides of such a war would be fascinating. Intel has its roots in the PC chip market which is still suffering while Samsung is based in the mobile chip market which is growing. Intel has had no luck crossing into the mobile market, but Samsung could start looking at server and PC chips.

AMD is still dying and unable to offer Intel any challenge but there is a large market for those PC users who do not want to buy Intel. What Samsung should have done is use its huge cash pile to buy its way into the PC market. It might have done so with the IBM tech which went to Lenovo. It is still not out of the running on that front. Lenovo might be happy to sell IBM tech to Samsung.

Another scenario is that it might try to buy an x86 licence from Intel. With AMD dying, Intel is sitting on a huge monopoly for PC technology. It is only a matter of time before an anti-trust suit appears. Intel might think it is worthwhile to get a reliable rival to stop those allegations taking place. Samsung would be a dangerous rival, but it would take a while before it got itself established. Intel might do well to consider it. Of course Samsung might buy AMD which could sweeten that deal for Intel.

Samsung could try adapting its mobile chip technology for the PC/server market – it has the money to do it. Then it has a huge job marketing itself as the new Intel.

Source-http://www.thegurureview.net/computing-category/can-samsung-compete-with-intel-in-the-x86-chip-space.html

MediaTek Building Ecosystem To Power IoT

October 12, 2015 by  
Filed under Computing

Comments Off on MediaTek Building Ecosystem To Power IoT

MediaTek is quietly building an ecosystem to drive IoT strategy to push its System on Chip shipments across multiple devices.

The fabless chipmaker is signing partnerships with Amazon, Tinitell, Apple, and People Power.

MediaTek is starting to come out of the shadows in the West with its SoC designs. It sees the IoT as a way to push more of its chips.

It has put in a tender to buy power management outfit Richtek Technology to expand its leadership in Power Management Integrated Circuits (PMIC) to strengthen its overall capabilities for the IoT business model. The deal is expected to close in Q2 2016.

It has provided funding to People Power, a user engagement company providing apps, cloud and mobile services for IoT to further accelerate its penetration in the IoT market in both the U.S. and China, develop new IoT products based on its Fabrux and Influx software architecture

Release of two software development kits (SDKs) for Apple HomeKit, the framework in iOS 8 for communicating with and controlling connected accessories in a user’s home.

This is on top of its partnership with Amazon for the latest devices – Amazon Fire TV is powered by MediaTek’s MT8173, a 64-bit quad-core processor and the world’s first multimedia SoC with ARM’s Cortex-A72 cores; Fire HD 8 and Fire HD 10 tablets powered by MT8135, an up to 1.5 GHz quad-core processor, resulting in a fast and fluid user interface, and smooth running HD videos and high frame-rate games.

Chief Marketing Officer, Johan Lodenius said the company’s cunning plan was to innvovate widely available technology that provides integrated connectivity, while investing in and nurturing developers and the maker community to deliver practical yet innovative solutions.

Source-http://www.thegurureview.net/computing-category/mediatek-building-ecosystem-to-power-iot.html

« Previous PageNext Page »