Helio Finally Launches X27
MediaTek has announced two more Helio X20 series products – a Helio X27 and an X23 and as you can figure out from the names; Helio X27 is faster than the X25 while X23 is a bit slower.
Helio X25 was the fastest deca-core 20nm SoC from MediaTek with three cluster designs and this SoC ended up in quite a few prominent China higher end phones including a few Meizu devices. But it looks like customers wanted a bit faster camera, SoC and GPU performance for its late 2016 early 2017 phones, the ones that will launch before the Helio X30 comes to market.
Jeffrey Ju, Executive Vice President and Co-Chief Operating Officer at MediaTek said: “The MediaTek Helio platform fulfills the diverse needs of device makers. Based on the success of MediaTek Helio X20 and X25, we are introducing the upgraded MediaTek Helio X23 and X27. The new SoCs support premium dual camera photography and provide best in-class performance and power consumption,”
The Helio X25 has two Cortex A73 cores clocked at 2.5 GHz, four Cortex A53 clocked at 2.00 GHz and last four Cortex A53 clocked at 1.55GHz. The Mali GT880 graphics is clocked at 850 MHz.
The Helio X20 has two Cortex A73 cores clocked at 2.1 GHz, four Cortex A53 clocked at 1.85 GHz and last four Cortex A53 clocked at 1.4GHz. The Mali GT880 graphics is clocked at 780 MHz.
The newcomer, Helio X27, has two Cortex A73 cores clocked at 2.6 GHz, four Cortex A53 clocked at 2.00 GHz and the last four Cortex A53 clocked at 1.6 GHz. The Mali GT880 graphics is clocked at 875 MHz. The rest of the specification is identical to the Helio X25.
The Helio X23 has two Cortex A73 cores clocked at 2.3 GHz, four Cortex A53 clocked at 1.85 GHz and the last four Cortex A53 clocked at 1.4GHz. The Mali GT880 graphics is clocked at 780 MHz. As you can see, this is just a slightly faster version of Helio X20 and it sits just below Helio X25 with its specs.
Thanks to MediaTek-engineered advancements in the CPU/GPU heterogeneous computing scheduling algorithm, both products deliver more than a 20 percent overall processing improvement and significant increases in web browsing and application launching speeds. This definitely sounds promising but you should bear in mind that MediaTek had enough time to optimize these designs of the new and updated SoCs.
Phones based on the Helio X27 and X23 will be available soon.
Courtesy-Fud
Is TSMC Experiencing Unusual Growth?
Comments Off on Is TSMC Experiencing Unusual Growth?
TSMC s expected to see a 10 percent revenue increase in 2016.
Company co-CEO Mark Liu said that while the fourth quarter could be a bit rough as customers start their inventory adjustments, TSMC’s sales for the quarter will still outperform those for the third quarter.
Talking to Digitimes Lui said that smartphone demand was affected negatively by macroeconomic factors in the first half of 2016. But apparently smartphone chip clients are ordering again in the second half of the year.
TSMC previously estimated its 2016 revenues would grow 5-10 per cent. The foundry expects to meet the high end of the growth guidance, Liu said. In his speech at the CEO Forum of SEMICON Taiwan 2016. Liu claimed that the foundry industry growth is being driven by the markets for smartphones, HPC, automotive and IoT.
Apps like Pokemon G will require more silicon chips used in mobile devices that will be another growth driver in the future, Liu said.
Courtesy-Fud
nVidia Updates Its Grid Platform
Nvidia has updated its Grid software platform with deeper performance profiling and analytics tools for planning, deployment, and support of virtual GPU users.
According to the company the improved management tools address both host (server) managment and virtual client monitoring. Nvidia says that with the new Grid software, admins will be able to get information about the number of virtual graphics instances in use and the number they can potentially create.
They can also see usage information for the stream processors on board each card, the percentage of the card’s frame buffer that’s in use, and the load on each card’s dedicated video encode and decode hardware.
Each guest vGPU instance will tell admins information on encoder and decoder usage, frame buffer occupancy, and the vGPU use. Nvidia adds that it all takes the guess work out of vGPU provisioning and the data it’s exposing about vGPU usage will let system administrators tailor their virtual user profiles better.
All this means that it might stop the admins giving too much processing power to accounts when it is needed for the graphics team. Nvidia thinks those operational improvements will also help lower costs. The August 2016 Grid software update should be available immediately.
Courtesy-Fud
AMD Finally Confirms Polaris Specs
In an official slides that have leaked, AMD has confirmed most of the specifications for both the Polaris 10 and the Polaris 11 GPUs which will power the upcoming Radeon RX 480, RX 470 and RX 460 graphics cards.
According to the slides published by Computerbase.de, both GPUs are based on AMD’s 4th generation Graphics Core Next (GCN 4.0) GPU architecture, offer 2.8 perf/watt improvement compared to the previous generation, have 4K encode and decode capabilities as well as bring DisplayPort 1.3/1.4 and HDR support.
Powering three different graphics cards, these two GPUs will cover different market segments, so the Polaris 10, codename Ellesmere, will be powering both the Radeon RX 480, meant for affordable VR and 1440p gaming as well as the recently unveiled RX 470, meant to cover the 1080p gaming segment. The Polaris 10 packs 36 Compute Units (CUs) so it should end up with 2304 Stream Processors. Both the RX 480 and RX 470 should be coming with 4GB or 8GB of GDDR5 memory, paired up with a 256-bit memory interface. The Ellesmere GPU offers over 5 TFLOPs of compute performance and should peak at 150W.
The Radeon RX 470 should be based on Ellesmere Pro GPU and will probably end up with both lower clocks as well as less Stream Processors and according to our sources close to the company, should launch with a US $179 price tag, while the RX 480 should launch on 29th of June with a US $199 price tag for a reference 4GB version. Most AIB partners will come up with a custom 8GB graphics cards which should probably launch at US $279+.
The Polaris 11 GPU, codename Baffin, will have 16 CUs and should end up with 1024 Stream Processors. The recently unveiled Radeon RX 460 based on this GPU should come with 4GB of GDDR5 memory paired up with a 128-bit memory interface. The Radeon RX 460 targets casual and MOBA gamers and should provide decent competition to the Geforce GTX 950 as both have a TDP of below 75W and do not need additional PCIe power connectors.
According to earlier leaked benchmarks, AMD’s Polaris architecture packs quite a punch considering both its price and TDP so AMD just might have a chance to get a much needed rebound in the market share.
Courtesy-Fud
Micron Announces 3D NAND Based SSDs
Micron has announced its first client- and OEM-oriented solid-state drives based on 3D NAND, the Micron 1100 and Micron 2100 series.
The Micron 1100 SSD is a more mainstream oriented SSD that will be based on Marvell’s 88SS1074 controller and Micron’s 384Gb 32-layer TLC NAND. Using a SATA 6Gbps interface and available in M.2 and 2.5-inch form-factors, the Micron 1100 should replace Micron’s mainstream M600 series, based on 16nm MLC NAND.
The Micron 1100 SSD will be available in 256GB, 512GB, 1TB and 2TB capacities. It will offer sequential performance of up to 530MB/s for read and up to 500MB/s for write with random 4K performance of up to 92K for read and up to 83K IOPS for write. With such performance, it is obvious that the Micron 1100 series will target mainstream market and be a budget SSD.
The Micron 2100 is an M.2 PCIe NVMe SSD that is actually Micron’s first client oriented PCIe SSD and also the first PCIe SSD based on 3D NAND. Unfortuantely, Micron did not finalize the precise specifications so we still do not have precise performance numbers but it will be available in capacities reaching 1TB.
The Micron 1100 is expected to hit mass production in July so we should expect some of the first drives by the end of the next month. The Micron 2100 will be coming by the end of summer.
Courtesy-Fud
MediaTek To Spin-Off Virtual Reality Unit
Comments Off on MediaTek To Spin-Off Virtual Reality Unit
MediaTek is so confident about its VR plans it is going to spin off its VR division to form an independent company in June.
A recent Chinese-language Economic Daily News report claims that Mediatek wants the spun off business to drive VR sales. It all sounds pretty good but MediaTek have sort of denied the report.
Well we say sort of denied it. What it has told the Taiwan Stock Exchange that it was not the report’s source, which is not quite the same thing.The spin off could go ahead, but MediaTek is denying that it told the EDN its cunning plans. But then again the EDN did not name its source either. Without a denial from the company we are none the wiser.
MediaTek’s VR unit was set up between end-2015 and early-2016 to focus on the development of the company’s VR solutions for handsets, the EDN thought.
Courtesy-Fud
TSMC Working On Apple’s A11 Processor
Apple’s partner in crime, TSMC has begun to tape out the design for Apple’s A11 processor built on a 10nm FinFET process.
Digitimes’ deep throats claimed TSMC is expected to achieve certification on its 10nm process in the fourth quarter of 2016, and deliver product samples to the customer for validation in the first quarter of 2017.
This means that TSMC could begin small-volume production for Apple’s A11 chips as early as the second quarter of 2017 and building the chips will likely start to generate revenues at TSMC in the third quarter. The A11-series processor will power the iPhone models slated for launch in the second half of 2017.
TSMC is expected to get two-thirds of the overall A11 chip orders from Apple.
The company is officially refusing to comment on Digitimes’ story, but it does fit into what we have already been told about Jobs’ Mob’s plans for next year.
Courtesy-Fud
Will HMB 2.0 GPUs Show Up This Year?
Our well-placed industry sources have told us that we should not expect to see the HMB 2.0 based GPUs shipping anytime soon. Nvidia Pascal and AMD Polaris 10 / 11 will stick with GDDR5 memory for the time being.
The 2nd generation High Bandwidth Memory (HBM 2.0) for high-end GPUs might happen in very late Q4 2016 but realistically it probably won’t ship until 2017 in any volume.
The first card that we expect supporting this feature might be the Greenland, a card that AMD might end up calling Vega. Even according Radeon Technology Group’s official GPU roadmap, Vega / Greenland now look like a 2017 product, or at very best, late 2016 card. Nvidia might make the HBM 2.0 version of the Titan card, but we don’t expect to see a Geforce GTX based on Pascal GPU and HBM 2.0 coming to the market this year.
We managed to talk to some of the memory manufactures and they told us that HBM 2.0 is very limited in supply, and limited supply makes things expensive.
It seems that GPUs of 2016, including the new AMD Polaris and the new Geforce, will be stuck with GDDR5 and in best case scenario with GDDR5X from Micron. The word on the street is that both Geforce GTX based on Pascal and AMD/RTG’s Polaris 10 / Ellesmere and Polaris 11 / Baffin might launch at Computex during last days of May or early June 2016.
Courtesy-Fud
Is TSMC Taking A Fall?
On Thursday Taiwan Semiconductor Manufacturing Company announced an 18 percent quarterly revenue decline for Q1 2016 from the same timeframe a year ago in Q1 2015. The chip manufacturing giant also announced Q1 2016 net profit of $2 billion USD ($64.78 billion TWD), representing an 8.3 percent quarterly profit decline from the same timeframe a year ago in Q1 2015.
For TSMC, Q1 2016 was marked by a reduction of demand for high-end smartphones, while smartphone demand in China and emerging markets had upward momentum. Beginning Q2 2016 and onward, the company expect to get back onto a growth trajectory and is projected to hit a 5 to 10 percent growth rate in 2016.
“Our 10-nanometer technology development is on track,” said company president and co-CEO Mark Liu during the company’s Q4 2015 earnings call. “We are currently in intensive yield learning mode in our technology development. Our 256-megabit SRAM is yielding well. We expect to complete process and product qualification and begin customer product tape-outs this quarter.”
“Our 7-nanometer technology development progress is on schedule as well. TSMC’s 7 nanometer technology development leverage our 10-nanometer development very effectively. At the same time, TSMC’s 7-nanometer offers a substantial density improvement, performance improvement and power reduction from 10-nanometer.
These two technologies, 10-nanometer and 7-nanometer, will cover a very wide range of applications, including application processors for smartphone, high-end networking, advanced graphics, field-programmable gate arrays, game consoles, wearables and other consumer products.”
In Q1 2016, TSMC reached a gross margin of 44.9 percent, an operating margin of 34.6 percent and a net profit margin of 31.8 percent respectively. Going forward into Q2 2016, the company is expecting revenue between ~$6.65 billion and ~$6.74 billion USD, gross margins between 49 and 51 percent, and operating profit margins between 38.5 and 40.5 percent, respectively.
Chips used for communications and industrial uses represented over 80 percent of TSMC’s revenue in FY 2015. The company was also able to improve its margins by increasing 16-nanometer production, and like many other semiconductor companies, is preparing for an expected upswing sometime in 2017.
In February, a 6.4-magnitude earthquake struck southern Taiwan where TSMC’s 12-inch Fab 14 is located, a current site of 16-nanometer production. The company expected to have a manufacturing impact above 1 percent in the region with a slight reduction in wafer shipments for the quarter.
“Although the February 6 earthquake caused some delay in wafer shipments in the first quarter, we saw business upside resulting from demand increases in mid- and low-end smartphone segments and customer inventory restocking,” said Lora Ho, Senior Vice President and Chief Financial Officer of TSMC.
“We expect our business in the second quarter will benefit from continued inventory restocking and recovery of the delayed shipments from the earthquake.”
In fiscal year 2016, the company will spend between $9 and $10 billion on ramping up the 16-nanometer process node, constructing Fab 15 for 12-inch wafers in Nanjing, China, and beginning commercial production of the 10-nanometer FinFET process at this new facility. Samsung and Intel are also expected to start mass production of 10-nanometer products by the end of 2016.
During its Q4 2015 earnings call, company president and co-CEO Mark Liu stated the company is currently preparing and working on a 7-nanometer process node and plans to begin volume production sometime in 2018. Meanwhile, since January 2015, a separate research and development team at TSMC has been laying the groundwork for a 5-nanometer process which the company expects to bring into commercial production sometime in 1H 2020.
So far in Q1 2016, shipments of 16 and 20-nanometer wafers have accounted for around 23 percent of the company’s total wafer revenues.
Courtesy-Fud
Can Samsung Beat Intel?
Samsung is closing in on Intel in the semiconductor sector as its market share increased by 0.9 percent when compared to a year earlier.
According to beancounters at IBS, the news comes on the heels of an announcement that the three-month average of the global market for semiconductors ending in February fell 6.2 percent compared with the same figure in 2015, down from a 5.8 percent decline in January.
IBS chief executive Handel Jones said:
“Based on talking to customers about buying patterns, we see softness,” said. “Smartphone sales are slowing, and the composition of the market is changing with about half all chips bought by companies in China who want low-end devices In addition, over the past year memory prices have fallen by nearly half both for DRAMs and NAND-based solid-state drives as vendors try to buy market share, said Jones. “It’s more of a price issue because volumes are up.”
Jones expects softness in the PC market will continue through this year. Demand for chips is rising in automotive and for the emerging Internet of Things, but so far both sectors are relatively small, he added.
Data shows that the gap between the market share of these Intel and Samsung firms is narrowing. In 2012, the gap between Intel and Samsung was 5.3 percent. This narrowed to 4.2 percent in 2013, and is now 3.2 percent in 2015. SK Hynix, which now stands as the third largest semiconductor brand in the world, beat Qualcomm with a market share of 4.8 percent.
Courtesy-Fud