Syber Group
Toll Free : 855-568-TSTG(8784)
Subscribe To : Envelop Twitter Facebook Feed linkedin

MediaTek Goes IoT

October 6, 2014 by  
Filed under Internet

Comments Off on MediaTek Goes IoT

SoC designer MediaTek has launched a new push to develop technologies used in wearables and Internet-of-Things (IoT) devices.

Dubbed MediaTek Labs, the new organisation will offer tools for developers such as software and hardware development kits (SDKs and HDKs), but it will also offer other forms of support, i.e. tech support and marketing.

MediaTek LinkIt dev platform

The MediaTek LinkIt platform promises to offer a full-service approach for developers keen to enter the space. It allows developers familiar with MediaTek’s Arduino implementation to quickly migrate to the new platform

For the time being the platform is limited to the MediaTek Aster MT2502A processor. The company says it is the world’s smallest commercially available SoC. The chip can work with MediaTek’s WiFi and GPS companion chipsets.

The company is calling on developers to join the MediaTek Labs initiative and in case you are interested you can check out the details on the new MediaTek Labs website.

MediaTek Aster spec

Now for some juicy hardware. The Aster MT2502A is an ARM7 EJ-S part clocked at 260MHz. The dev board features 4MB of RAM and 16MB of flash. GPS and WiFi capability can be added using the MT3332 and MT5931 chips. The platform supports microSD, Bluetooth (including BLE), along with GSM and GPRS communications.

The Aster is clearly not an SoC for feature packed wearables with high resolution screens, but it could be used in more down to earth applications such as fitness trackers.

MediaTek says it will offer three platforms based on two wearable solutions. The One Application Use (OAU) platform is for fitness trackers and simple Bluetooth devices. The Simple Application Platform (SAU) is intended for smart watches, wristbands and more elaborate fitness trackers.

SAU is the focus segment for the Aster chipset and it should offer 5 to 7 days of battery life.

MediaTek Rich Application Platform

The Rich Application Platform (RAU) is for Android Wear and it will offer a lot more functionality out of the box, including camera support, 3D graphics, as well as Bluetooth, WiFi and GPS in the same package.

This platform sounds a bit more interesting, but details are sketchy. For some reason many media outlets erroneously described the first Aster chip as MediaTek’s only smartwatch chip, but it is clearly not intended for the Rich Application Platform.

We have yet to see what sort of silicon MediaTek can conjure up for high-end wearables, but this is what it has in mind. The platform is designed for high-end smartwatches and glasses. It will feature multicore processors clocked at 1GHz or more. The platform also includes Bluetooth, GSM/GPRS, GPS, WiFi, sensors and a proper TFT screen. Battery life is described as short, two to three days, which sounds a bit better than what the current generation of smartwatches can deliver.

Source

ARM Launches Juno

July 18, 2014 by  
Filed under Computing

Comments Off on ARM Launches Juno

ARM has announced two programs to assist Android’s ascent into the 64-bit architecture market.

The first of those is Linaro, a port of the Android Open Source Project to the 64-bit ARMv8-A architecture. ARM said the port was done on a development board codenamed “Juno”, which is the second initiative to help Android reach the 64-bit market.

The Juno hardware development platform includes a system on chip (SoC) powered by a quad-core ARM Cortex-A53 CPU and dual-core ARM Cortex-A57 CPU in an ARM big.little processing configuration.

Juno is said to be an “open, vendor neutral ARMv8 development platform” that will also feature an ARM Mali-T624 graphics processor.

Alongside the news of the 64-bit initiatives, ARM also announced that Actions Semiconductor of China signed a license agreement for the 64-bit ARM Cortex-A50 processor family.

“Actions provides SoC solutions for portable consumer electronics,” ARM said. “With this IP license, Actions will develop 64-bit SoC solutions targeting the tablet and over-the-counter (OTT) set top box markets.”

The announcements from ARM come at an appropriate time, as it was only last week that Google announced the latest version of its Android mobile operating system, Android L, which comes with support for 64-bit processors. ARM’s latest developments mean that Android developers are likely to take advantage of them in the push to take Android to the 64-bit market.

Despite speculation that it would launch as Android 5.0 Lollipop, Google outed its next software iteration on Wednesday last week as simply Android L, touting the oddly-named iteration as “the largest update to the operating system yet”.

Source

nVidia Releases CUDA

July 10, 2014 by  
Filed under Computing

Comments Off on nVidia Releases CUDA

Nvidia has released CUDA – its code that lets developers run their code on GPUs – to server vendors in order to get 64-bit ARM cores into the high performance computing (HPC) market.

The firm said today that ARM64 server processors, which are designed for microservers and web servers because of their energy efficiency, can now process HPC workloads when paired with GPU accelerators using the Nvidia CUDA 6.5 parallel programming framework, which supports 64-bit ARM processors.

“Nvidia’s GPUs provide ARM64 server vendors with the muscle to tackle HPC workloads, enabling them to build high-performance systems that maximise the ARM architecture’s power efficiency and system configurability,” the firm said.

The first GPU-accelerated ARM64 software development servers will be available in July from Cirrascale and E4 Computer Engineering, with production systems expected to ship later this year. The Eurotech Group also plans to ship production systems later this year.

Cirrascale’s system will be the RM1905D, a high density two-in-one 1U server with two Tesla K20 GPU accelerators, which the firm claims provides high performance and low total cost of ownership for private cloud, public cloud, HPC and enterprise applications.

E4′s EK003 is a production-ready, low-power 3U dual-motherboard server appliance with two Tesla K20 GPU accelerators designed for seismic, signal and image processing, video analytics, track analysis, web applications and Mapreduce processing.

Eurotech’s system is an “ultra-high density”, energy efficient and modular Aurora HPC server configuration, based on proprietary Brick Technology and featuring direct hot liquid cooling.

Featuring Applied Micro X-Gene ARM64 CPUs and Nvidia Tesla K20 GPU accelerators, the new ARM64 servers will provide customers with an expanded range of efficient, high-performance computing options to drive compute-intensive HPC and enterprise data centre workloads, Nvidia said.

Nvidia added, “Users will immediately be able to take advantage of hundreds of existing CUDA-accelerated scientific and engineering HPC applications by simply recompiling them to ARM64 systems.”

ARM said that it is working with Nvidia to “explore how we can unite GPU acceleration with novel technologies” and drive “new levels of scientific discovery and innovation”.

Source

Can MediTek Win With Amazon?

May 23, 2014 by  
Filed under Computing

Comments Off on Can MediTek Win With Amazon?

According to the Taiwan Economic Daily, the chipmaker will supply SoCs for upcoming Amazon tablets. Details are sketchy and it is unclear whether MediaTek has landed an order for all Kindle Fire SKUs or just one of them. The paper claims MediaTek will start shipping the chips later this year, but we have no way of confirming or denying the report.

The chip in question appears to be the MT8135. It is a mid-range big.LITTLE part announced last year and it features two Cortex A15 and two Cortex A7 CPU cores. The GPU comes from Imagination and it’s the relatively fresh PowerVR G6200. The GPU is capable of churning out 83.2 GFLOPS at 650MHz, depending on the configuration of course.

It sounds like a decent all-round SoC, with a substantially faster GPU than previous MediaTek offerings in the same segment, which were powered by venerable SGX 54x and Mali 400/450 GPUs.

Information is limited and we can’t say for sure whether or not MediaTek actually landed the deal, or whether the deal includes more than a single Kindle Fire SKU. If true, it is a big coup for the Taiwan-based chipmaker, as Amazon ships up to two million Kindle tablets each quarter.

It would also help MediaTek’s ambitious tablet plans. The company hopes to double shipments of tablet-centric SoC products this year.

Source

ARM To Focus On 64-bit SoC

May 15, 2014 by  
Filed under Computing

Comments Off on ARM To Focus On 64-bit SoC

ARM announced its first 64-bit cores a while ago and SoC makers have already rolled out several 64-bit designs. However, apart from Apple nobody has consumer oriented 64-bit ARM devices on the market just yet. They are slowly starting to show up and ARM says the transition to 64-bit parts is accelerating. However, the first wave of 64-bit ARM parts is not going after the high-end market.

Is 64-bit support on entry-level SoCs just a gimmick?

This trend raises a rather obvious question – are low end ARMv8 parts just a marketing gimmick, or do they really offer a significant performance gain? There is no straight answer at this point. It will depend on Google and chipmakers themselves, as well as phonemakers.

Qualcomm announced its first 64-bit part late last year. The Snapdragon 410 won’t turn many heads. It is going after $150 phones and it is based on Cortex A53 cores. It also has LTE, which makes it rather interesting.

MediaTek is taking a similar approach. Its quad-core MT6732 and octa-core MT6752 parts are Cortex A53 designs, too. Both sport LTE connectivity.

Qualcomm and MediaTek appear to be going after the same market – $100 to $150 phones with LTE and quad-core 64-bit stickers on the box. Marketers should like the idea, as they’re getting a few good buzzwords for entry-level gear.

However, we still don’t know much about their real-world performance. Don’t expect anything spectacular. The Cortex A53 is basically the 64-bit successor to the frugal Cortex A7. The A53 has a bit more cache, 40-bit physical addresses and it ends up a bit faster than the A7, but not by much. ARM says the A7 delivers 1.9DMIPS/MHz per core, while the A53 churns out 2.3DMIPS/MHz. That puts it in the ballpark of the good old Cortex A9. The first consumer oriented quad-core Cortex A9 part was Nvidia’s Tegra 3, so in theory a Cortex A53 quad-core could be as fast as a Tegra 3 clock-for-clock, but at 28nm we should see somewhat higher clocks, along with better graphics.

That’s not bad for $100 to $150 devices. LTE support is just the icing on the cake. Keep in mind that the Cortex A7 is ARM’s most efficient 32-bit core, hence we expect nothing less from the Cortex A53.

The Cortex A57 conundrum

Speaking to CNET’s Brooke Crothers, ARM executive vice president of corporate strategy Tom Lantzsch said the company was surprised by strong demand for 64-bit designs.

“Certainly, we’ve had big uptick in demand for mobile 64-bit products. We’ve seen this with our [Cortex] A53, a high-performance 64-bit mobile processor,” Lantzch told CNET.

He said ARM has been surprised by the pace of 64-bit adoption, with mobile parts coming from Qualcomm, MediaTek and Marvell. He said he hopes to see 64-bit phones by Christmas, although we suspect the first entry-level products will appear much sooner.

Lantzsch points out that even 32-bit code will run more efficiently on 64-bit ARMv8 parts. As software support improves, the performance gains will become more evident.

But where does this leave the Cortex A57? It is supposed to replace the Cortex A15, which had a few teething problems. Like the A15 it is a relatively big core. The A15 was simply too big and impractical on the 32nm node. On 28nm it’s better, but not perfect.  It is still a huge core and its market success has been limited.

As a result, it’s highly unlikely that we will see any 28nm Cortex A57 parts. Qualcomm’s upcoming Snapdragon 810 is the first consumer oriented A57 SoC. It is a 20nm design and it is coming later this year, just in time for Christmas as ARM puts it. However, although the Snapdragon 810 will be ready by the end of the year, the first phones based on the new chip are expected to ship in early 2015.

While we will be able to buy 64-bit Android (and possibly Windows Phone) devices before Christmas, most if not all of them will be based on the A53. That’s not necessarily a bad thing. Consumers won’t have to spend $500 to get a 64-bit ARM device, so the user base could start growing long before high-end parts start shipping, thus forcing developers and Google to speed up 64-bit development.

If rumors are to be believed, Google is doing just that and it is not shying away from small 64-bit cores. The search giant is reportedly developing a $100 Nexus phone for emerging markets. It is said to be based on MediaTek’s MT6732 clocked at 1.5GHz. Sounds interesting, provided the rumour turns out to be true.

Source

nVidia Goes For Raspberry Pi

April 14, 2014 by  
Filed under Computing

Comments Off on nVidia Goes For Raspberry Pi

nVidia has unveiled what it claims is “the world’s first mobile supercomputer”, a development kit powered by a Tegra K1 chip.

Dubbed the Jetson TK1, the kit is built for embedded systems to aid the development of computers attempting to simulate human recognition of physical objects, such as robots and self-driving cars.

Speaking at the GPU Technology Conference (GTC) on Tuesday, Nvidia co-founder and CEO Jen Hsun Huang described it as “the world’s tiniest little supercomputer”, noting that it’s capable of running anything the Geforce GTX Titan Z graphics card can run, but at a slower pace.

With a total performance of 326 GFLOPS, the Jetson TK1 should be more powerful than the Raspberry Pi board, which delivers just 24 GFLOPS, but will retail for much more, costing $192 in the US – a number that matches the number of cores in the Tegra K1 processor that Nvidia launched at CES in Las Vegas in January.

Described by the company as a “super chip” that can bridge the gap between mobile computing and supercomputing, the Nvidia Tegra K1, which replaces the Tegra 4, is based on the firm’s Kepler GPU architecture.

The firm boasted at CES that the chip will be capable of bringing next-generation PC gaming to mobile devices, and Nvidia claimed that it will be able to match the PS4 and Xbox One consoles’ graphics performance.

Designed from the ground up for CUDA, which now has more than 100,000 developers, the Jetson TK1 Developer Kit includes the programming tools required by software developers to develop and deploy compute-intensive systems quickly, Nvidia claimed.

“The Jetson TK1 also comes with this new SDK called Vision Works. Stacked onto CUDA, it comes with a whole bunch of primitives whether it’s recognising corners or detecting edges, or it could be classifying objects. Parameters are loaded into this Vision Works primitives system and all of a sudden it recognises objects,” Huang said.

“On top of it, there’s simple pipe lines we’ve created for you in sample code so that it helps you get started on what a structure for motion algorithm, object detection, object tracking algorithms would look like and on top of that you could develop your own application.”

Nvidia also expects the Jetson TK1 to be able to operate in the sub-10 Watt market for applications that previously consumed 100 Watts or more.

Source

nVidia Outs CUDA 6

March 19, 2014 by  
Filed under Computing

Comments Off on nVidia Outs CUDA 6

Nvidia has made the latest GPU programming language CUDA 6 Release Candidate available for developers to download for free.

The release arrives with several new features and improvements to make parallel programming “better, faster and easier” for developers creating next generation scientific, engineering, enterprise and other applications.

Nvidia has aggressively promoted its CUDA programming language as a way for developers to exploit the floating point performance of its GPUs. Available now, the CUDA 6 Release Candidate brings a major new update in unified memory access, which lets CUDA applications access CPU and GPU memory without the need to manually copy data from one to the other.

“This is a major time saver that simplifies the programming process, and makes it easier for programmers to add GPU acceleration in a wider range of applications,” Nvidia said in a blog post on Thursday.

There’s also the addition of “drop-in libraries”, which Nvidia said will accelerate applications by up to eight times.

“The new drop-in libraries can automatically accelerate your BLAS and FFTW calculations by simply replacing the existing CPU-only BLAS or FFTW library with the new, GPU-accelerated equivalent,” the chip designer added.

Multi-GPU Scaling has also been added to the CUDA 6 programming language, introducing re-designed BLAS and FFT GPU libraries that automatically scale performance across up to eight GPUs in a single node. Nvidia said this provides over nine teraflops of double-precision performance per node, supporting larger workloads of up to 512GB in size, more than it’s supported before.

“In addition to the new features, the CUDA 6 platform offers a full suite of programming tools, GPU-accelerated math libraries, documentation and programming guides,” Nvidia said.

The previous CUDA 5.5 Release Candidate was issued last June, and added support for ARM based processors.

Aside from ARM support, Nvidia also improved Hyper-Q support in CUDA 5.5, which allowed developers to use MPI workload prioritisation. The firm also touted improved performance analysis and improved performance for cross-compilation on x86 processors.

Source

IBM’s Watson Goes To Africa

February 20, 2014 by  
Filed under Computing

Comments Off on IBM’s Watson Goes To Africa

IBM has detailed plans to apply its Watson supercomputer the critical development issues facing Africa.

The machine is capable of holding more intelligent conversations than most Big Brother contestants, and in 2011 it beat human contestants on the US TV game show Jeopardy.

However, in Africa it will be used to help solve the pressing problems facing the continent such as agricultural patterns and famine relief.

The initiative, named Project Lucy after the earliest human remains discovered on the continent, will take 10 years and is expected to cost $100m.

“I believe it will spur a whole era of innovation for entrepreneurs here,” IBM CEO Ginni Rometty told delegates at a conference on Wednesday.

“Data… needs to be refined. It will determine undisputed winners and losers across every industry.”

The technology will be used to find ways to enable the developing world to leapfrog over stages of development that have hitherto been too expensive.

One example cited was Nigeria, where two companies have already committed to use Project Lucy to analyse the poorly maintained road system and determine project priorities for repair.

IBM recently announced that it will invest $1bn to spin off Watson into a separate business unit, however this could be quite a gamble as Reuters reported that although Watson has proved to be a quantum leap, it has yet to make any significant money for the company, netting less than $100m in the past three years.

Source

nVidia Pays Up

January 10, 2014 by  
Filed under Around The Net

Comments Off on nVidia Pays Up

Nvidia has agreed to pay any Canadian who had the misfortune to buy a certain laptop computer made by Apple, Compaq, Dell, HP, or Sony between November 2005 and February 2010. Apparently these models contained a dodgy graphics card which was not fixed for five years.

Under a settlement approved by the court Nvidia will pay $1,900,000 into a fund for anyone who might have bought a faulty card. The Settlement Agreement provides partial cash reimbursement of the purchase price and you have to submit a claim by February 25, 2014. You will know if your Nvidia card was faulty because your machine would have a distorted or scrambled video, or no video on the screen even when the computer is on. There would be random characters, lines or garbled images – a bit like watching one of the Twilight series. There will be intermittent video issues or a failure to detect wireless adaptor or wireless networks.

The amount of compensation will be determined by the Claims Administrator who will apply a compensation grid and settlement administration guidelines. Cash compensation will also be provided for total loss of use based on the age of the computer; temporary loss of use having regard to the nature and duration of the loss of use; and reimbursement for out-of-pocket expenses caused by Qualifying Symptoms to an Affected Computer.

Source

nVidia Launching New Cards

September 10, 2013 by  
Filed under Computing

Comments Off on nVidia Launching New Cards

We weren’t expecting this and it is just a rumour, but reports are emerging that Nvidia is readying two new cards for the winter season. AMD of course is launching new cards four weeks from now, so it is possible that Nvidia would try to counter it.

The big question is with what?

VideoCardz claims one of the cards is an Ultra, possibly the GTX Titan Ultra, while the second one is a dual-GPU job, the Geforce GTX 790. The Ultra is supposedly GK110 based, but it has 2880 unlocked CUDA cores, which is a bit more than the 2688 on the Titan.

The GTX 790 is said to feature two GK110 GPUs, but Nvidia will probably have to clip their wings to get a reasonable TDP.

We’re not entirely sure this is legit. It is plausible, but that doesn’t make it true. It would be good for Nvidia’s image, especially if the revamped GK110 products manage to steal the performance crown from AMD’s new Radeons. However, with such specs, they would end up quite pricey and Nvidia wouldn’t sell that many of them – most enthusiasts would probably be better off waiting for Maxwell.

Source

« Previous PageNext Page »