Software Glitch Hits Prius
February 25, 2014 by admin
Filed under Around The Net
Comments Off on Software Glitch Hits Prius
Toyota is recalling nearly 1.9 million Prius hybrid automobiles globally in order to fix a software glitch that could damage transistors and cause a loss of power.
Some 700,000 of the Priuses are in the U.S., according to a statement. Another 997,000 are in Japan, 130,000 in Europe and the remainder in other places around the world, according to media reports. Toyota didn’t immediately respond to a request for confirmation of those details on.
Toyota plans to tweak software in the Priuses for the motor/generator ECU (engine control unit) and the hybrid control ECU. The current settings “could result in higher thermal stress in certain transistors, potentially causing them to become damaged,” Toyota said. “If this happens, various warning lights will illuminate and the vehicle can enter a failsafe mode. In rare circumstances, the hybrid system might shut down while the vehicle is being driven, resulting in the loss of power and the vehicle coming to a stop.”
Toyota is also recalling about 260,000 2012 RAV4 compact sport utility vehicles, 2012-2013 Tacoma trucks and 2012-2013 Lexus RX 350 SUVs in the U.S., the company said Wednesday.
Toyota will apply an update to skid control ECU software on cars in this recall to fix an “electronic circuit condition” that could cause the vehicles stability control, anti-lock braking systems and traction control function to shut down intermittently, Toyota said. However, in the event of such a failure the standard brakes will still work, according to the company.
No accidents or injuries have been reported in connection with the software problems, Toyota said. The software update will be applied free of charge at local dealers.
Google Goes Quantum
When is a blink not a natural blink? For Google the question has such ramifications that it has devoted a supercomputer to solving the puzzle.
Slashgear reports that the internet giant is using its $10 million quantum computer to find out how products like Google Glass can differentiate between a natural blink and a deliberate blink used to trigger functionality.
The supercomputer based at Google’s Quantum Artificial Intelligence Lab is a joint venture with NASA and is being used to refine the algorithms used for new forms of control such as blinking. The supercomputer uses D-Wave chips kept at as near to absolute zero as possible, which makes it somewhat impractical for everyday wear but amazingly fast at solving brainteasers.
A Redditor reported earlier this year that Google Glass is capable of taking pictures by responding to blinking, however the feature is disabled in the software code as the technology had not advanced enough to differentiate between natural impulse and intentional request.
It is easy to see the potential of blink control. Imagine being able to capture your life as you live it, exactly the way you see it, without anyone ever having to stop and ask people to say “cheese”.
Google Glass is due for commercial release next year but for the many beta testers and developers who already have one this research could lead to an even richer seam of touchless functionality.
If nothing else you can almost guarantee that Q will have one ready for Daniel Craig’s next James Bond outing.
Stanford Develops Carbon Nanotubes
Researchers at Stanford University have demonstrated the first functional computer constructed using only carbon nanotube transistors.
Scientists have been experimenting with transistors based on carbon nanotubes, or CNTs, as substitutes for silicon transistors, which may soon hit their physical limits.
The rudimentary CNT computer is said to run a simple operating system capable of multitasking, according to a synopsis of an article published in the journal Nature.
Made of 178 transistors, each containing between 10 and 200 carbon nanotubes, the computer can do four tasks summarized as instruction fetch, data fetch, arithmetic operation and write-back, and run two different programs concurrently.
The research team was led by Stanford professors Subhasish Mitra and H.S. Philip Wong.
“People have been talking about a new era of carbon nanotube electronics moving beyond silicon,” Mitra said in a statement. “But there have been few demonstrations of complete digital systems using [the] technology. Here is the proof.”
IBM last October said its scientists had placed more than 10,000 transistors made of nano-size tubes of carbon on a single chip. Previous efforts had yielded chips with just a few hundred carbon nanotubes.
AMD’s Richland Shows Up
Kaveri is coming in a few months, but before it ships AMD will apparently spice up the Richland line-up with a few low-power parts.
CPU World has come across an interesting listing, which points to two new 45W chips, the A8-6500T and the A10-6700T. Both are quads with 4MB of cache. The A8-6500T is clocked at 2.1GHz and can hit 3.1GHz on Turbo, while the A10-6700T’s base clock is 2.5GHz and it maxes out at 3500MHz.
The prices are $108 and $155 for the A8 and A10 respectively, which doesn’t sound too bad although they are still significantly pricier than regular FM2 parts.
AMD’s Kaveri Coming In Q4
AMD really needs to make up its mind and figure out how it interprets its own roadmaps. A few weeks ago the company said desktop Kaveri parts should hit the channel in mid-February 2014. The original plan called for a launch in late 2013, but AMD insists the chip was not delayed.
Now though, it told Computerbase.de that the first desktop chips will indeed appear in late 2013 rather than 2014, while mobile chips will be showcased at CES 2014 and they will launch in late Q1 or early Q2 2014.
As we reported earlier, the first FM2+ boards are already showing up on the market, but at this point it’s hard to say when Kaveri desktop APUs will actually be available. The most logical explanation is that they will be announced sometime in Q4, with retail availability coming some two months later.
Kaveri is a much bigger deal than Richland, which was basically Trinity done right. Kaveri is based on new Steamroller cores, it packs GCN graphics and it’s a 28nm part. It is expected to deliver a significant IPC boost over Piledriver-based chips, but we don’t have any exact numbers to report.
ARM & Oracel Optimize Java
ARM’s upcoming ARMv8 architecture will form the basis for several processors that will end up in servers. Now the firm has announced that it will work with Oracle to optimise Java SE for the architecture to squeeze out as much performance as possible.
ARM’s chip licensees are looking to the 64-bit ARMv8 architecture to make a splash in the low-power server market and go up against Intel’s Atom processors. However unlike Intel that can make use of software already optimised for x86, ARM and its vendors need to work with software firms to ensure that the new architecture will be supported at launch.
Oracle’s Java is a vital piece of software that is used by enterprise firms to run back-end systems, so poor performance from the Java virtual machine could be a serious problem for ARM and its licensees. To prevent that, ARM said it will work with Oracle to improve performance, boot-up performance and power efficiency, and optimize libraries.
Henrik Stahl, VP of Java Product Management at Oracle said, “The long-standing relationship between ARM and Oracle has enabled our mutual technologies to be deployed across a broad spectrum of products and applications.
“By working closely with ARM to enhance the JVM, adding support for 64-bit ARM technology and optimizing other aspects of the Java SE product for the ARM architecture, enterprise and embedded customers can reap the benefits of high-performance, energy-efficient platforms based on ARM technology.”
A number of ARM vendors including x86 stalwart AMD are expected to bring out 64-bit ARMv8 processors in 2014, though it is thought that Applied Micro will be the first to market with an ARMv8 processor chip later this year.
Intel Releases 16GB Xeon Phi
Intel has announced five Xeon Phi accelerators including a high density add-in card while upping memory capacity to 16GB.
Intel has managed to get its Xeon Phi accelerator cards to power the Tianhe-2 cluster to the summit of the Top 500 list, however the firm isn’t waiting around to bring out new products. At the International Supercomputing show, Intel extended its Xeon Phi range with five new products, all of which have more than one TFLOPS double precision floating point performance, and the Xeon Phi 7120P and 7120X cards, which have 16GB of GDDR5 memory.
Intel’s Xeon Phi 7120P and 7120X cards have peak double precision floating point performance of over 1.2 TFLOPS, with 352GB/s bandwidth to the 16GB of GDDR5 memory. The firm also updated its more modest Xeon Phi 3100 series with the 3120P and 3120A cards, both with more than one TFLOPS of double precision floating point performance and 6GB of GDDR5 memory with bandwidth of 240GB/s.
Intel has also brought out the Xeon Phi 5120D, a high density card that uses mini PCI-Express slots. The firm said that the Xeon Phi 5120D card offers double precision floating point performance of more than one TFLOPS and 8GB of GDDR5 memory with bandwidth greater than 300GB/s.
That Intel is concentrating on double precision floating point performance with its Xeon Phi accelerators highlights the firm’s focus on research rather than graphics rendering or workstation tasks. However the firm’s ability to pack 16GB into its Xeon Phi 7100 series cards is arguably the most important development, as larger locally addressable memory means higher resolution simulations.
Intel clearly seems to believe that there is significant money to be made in the high performance PC market, and despite early reservations from industry observers the firm seems to be ramping up its Xeon Phi range at a rate that will start to give rival GPGPU accelerator designer Nvidia cause for concern.
Should Investors Dump AMD?
If you have any old AMD shares lying around you might like to sell them as fast as you can, according to the bean counters at Goldman Sachs.
Despite the fact that the company is doing rather well, and its share price is has gone up rapidly over recent months, Goldman Sach analysts claim that the writing is on the wall for AMD. It thinks that AMD shares will be worth just $2.50 soon. The stock’s 50-day moving average is currently $2.98.
The company said that while AMD could clean up in the gaming market even if you take those figures into account the stock is trading at 22 times its 2014 CY EPS estimate. In other words the company’s core PC business is still shagged and still will generate 45 per cent of the company’s 2013 revenue.
“We therefore believe this recent move in the stock is just the latest in a long history of unsustainable rallies, and we are downgrading the stock to Sell. We believe the current multiple is unjustified for any company with such significant exposure to the secularly declining PC market,” the firm’s analyst wrote.
Analysts at Sanford C. Bernstein think that the share price will settle on $2.00 and FBR Capital Markets thinks $3.00. In other words if you want to know what is really happening at AMD you might as well ask the cat, than any Wall Street expert.
AMD Touts Its Memory Architecture
May 9, 2013 by admin
Filed under Around The Net
Comments Off on AMD Touts Its Memory Architecture
AMD has said the memory architecture in its heterogeneous system architecture (HSA) will move management of CPU and GPU memory coherency from the developer’s hands down to the hardware.
While AMD has been churning out accelerated processing units (APUs) for the best part of two years now, the firm’s HSA is the technology that will really enable developers to make use of the GPU. The firm revealed some details of the memory architecture that will form one of the key parts of HSA and said that data coherency will be handled by the hardware rather than software developers.
AMD’s HSA chips, the first of which will be Kaveri, will allow both the CPU and GPU to access system memory directly. The firm said that this will eliminate the need to copy data to the GPU, an operation that adds significant latency and can wipe out any gains in performance from GPU parallel processing.
According to AMD, the memory architecture that it calls HUMA – heterogeneous unified memory access, a play on unified memory access – will handle concurrency between the CPU and GPU at the silicon level. AMD corporate fellow Phil Rogers said that developers should not have to worry about whether the CPU or GPU is accessing a particular memory address, and similarly he claimed that operating system vendors prefer that memory concurrency be handled at the silicon level.
Rogers also talked up the ability of the GPU to take page faults and that HUMA will allow GPUs to use memory pointers, in the same way that CPUs dereference pointers to access memory. He said that the CPU will be able to pass a memory pointer to the GPU, in the same way that a programmer may pass a pointer between threads running on a CPU.
AMD has said that its first HSA-compliant chip codenamed Kaveri will tip up later this year. While AMD’s decision to give GPUs access to DDR3 memory will mean lower bandwidth than GPGPU accelerators that make use of GDDR5 memory, the ability to address hundreds of gigabytes of RAM will interest a great many developers. AMD hopes that they will pick up the Kaveri chip to see just what is possible.
IBM’s Next-gen Transistors Mimick Human Brain
Comments Off on IBM’s Next-gen Transistors Mimick Human Brain
IBM has discovered a way to make transistors that could be turned into virtual circuitry that mimics how the human brain operates.
The new transistors would be made from strongly correlated materials, such as metal oxides, which researchers say can be used to build more powerful — but less power-hungry — computation circuitry.
“The scaling of conventional-based transistors is nearing an end, after a fantastic run of 50 years,” said Stuart Parkin, an IBM fellow at IBM Research. “We need to consider alternative devices and materials that operate entirely differently.”
Researchers have been trying to find ways of changing conductivity states in strongly correlated materials for years. Parkin’s team is the first to convert metal oxides from an insulated to conductive state by applying oxygen ions to the material. The team recently published details of the work in the journal Science.
In theory, such transistors could mimic how the human brain operates in that “liquids and currents of ions [would be used] to change materials,” Parkin said, noting that “brains can carry out computing operations a million times more efficiently than silicon-based computers.”