TSMC Goes Fan-Out Wafers
TSMC is scheduled to move its integrated fan-out (InFO) wafer-level packaging technology to volume production in the second quarter of 2016.
Apparently the fruity cargo cult Apple has already signed up to adopt the technology, which means that the rest of the world’s press will probably notice.
According to the Commercial Times TSMC will have 85,000-100,000 wafers fabricated with the foundry’s in-house developed InFo packaging technology in the second quarter of 2016.
TSMC has disclosed its InFO packaging technology will be ready for mass production in 2016. Company president and co-CEO CC Wei remarked at an October 15 investors meeting that TSMC has completed construction of a new facility in Longtan, northern Taiwan.
TSMC’s InFo technology will be ready for volume production in the second quarter of 2016, according to Wei.
TSMC president and co-CEO Mark Liu disclosed the company is working on the second generation of its InFO technology for several projects on 10nm and 7nm process nodes.
Source-http://www.thegurureview.net/computing-category/tsmc-goes-fan-out-wafers.html
GPU Shipments Appear To Be On The Rise
Comments Off on GPU Shipments Appear To Be On The Rise
Beancounters at JPR have been adding up the numbers and dividing by their shoe size and worked out that GPU shipments are up for both Nvidia and AMD.
Over the last few months both have been busy with new releases. Nvidia has its GeForce GTX 950 and GTX 980 Ti, while AMD put its first HBM-powered cards in the Radeon R9 Fury X, Fury and the super-small R9 Nano into the shops.
According to JPR, overall GPU shipments are up quarter-over-quarter – with AMD’s overall GPU shipments up 15.8 per cent. But before AMD fanboys get all excited by a surprise return to form from AMD, JPR said that that NVIDIA “had an exceptionally strong quarter”. Nvidia saw an uptick of 21.3 per cent.
The PC market as a whole increased by 7.5 per cent quarter-over-quarter but decreased 9 per cent year-over-year. Nivida’s discrete GPU shipments were up 26.3 per cent according to JPR, while AMD’s discrete GPUs spiked by 33 per cent.
AMD’s mobile GPU shipments for notebooks increased by 17 per cent, while NVIDIA had 14 per cent.
Courtesy-http://www.thegurureview.net/computing-category/gpu-shipments-appear-to-be-on-the-rise.html
Imagination Gives MIPS Warrior A Boost
Comments Off on Imagination Gives MIPS Warrior A Boost
Imagination Technologies has introduced three new additions to the MIPS Warrior CPU family, updating its embedded 32-bit M-class CPUS with the new M6200 and M6250, as well as the higher performing P-class CPU with the 64-bit P6600.
The MIPS P6600 is touted as “the next evolution” of the P-class family and is intended to “pave the way” to future generations of higher performance 64-bit processors.
The MIPS P6600 builds on the 32-bit P5600 CPU, which was the company’s first CPU core based on the MIPS Series 5 architecture and announced about two years ago. The MIPS Series 5 was designed to accelerate compute-intensive applications and thereby appeal to the embedded and mobile markets.
The P6600 CPU boasts a higher performing 64-bit architecture while other improvements over its predecessor include a deep 16-stage pipeline with multi-issue and Out-of-Order execution to deliver better computational throughput for complex software workloads.
“The P6600 CPU is the most balanced mainstream high-performance CPU choice, enabling powerful multicore 64-bit system of chips with optimal area efficiency for applications in segments including mobile, home entertainment, networking, automotive, HPC or servers, and more,” said the chip firm, adding that customers have already licensed the P6600 for applications including high-performance computing and advanced image and vision systems.
Like the P5600, MIPS P6600 is an OmniShield-ready design that supports full hardware virtualisation and security features. It is said to be able to handle up to 15 guest operating systems running simultaneously in fully isolated and trusted environments, too.
“This unprecedented level of scalability for virtualisation and security gives the MIPS Warrior family another unique advantage in the battle for supremacy in the processor space,” added the firm.
The P6600 packs a faster SIMD engine for accelerating multimedia processing as well as branch prediction and a load/store instruction bonding mechanism: two technologies that Imagination said will provide a boost in real-world workloads while keeping silicon area and power consumption in check.
As for the MIPS M6200 and M6250 chips, these are the latest additions to Imagination’s less powerful M-class family processors for MCUs/MPUs, further broadening the M-class roadmap for high-performance deeply embedded designs in segments requiring higher performance and larger address space.
Imagination said this could include things like wired/wireless modems, GPU supervisor processors, flash and SSD controllers, industrial and motor control, and advanced audio voice processing.
Source-http://www.thegurureview.net/computing-category/imagination-gives-mips-warrior-a-boost.html
Is AMD Losing Top Scientist To nVidia?
Comments Off on Is AMD Losing Top Scientist To nVidia?
AMD is reeling after the high profile exit of one its top CPU brains Phil to rival Nvidia.
The outfit has been going through hell lately. Last month AMD ace CPU architect Jim Keller stepped away from the company after completing his work on Zen.
Rogers was one of AMD’s high-ranking technology and engineering corporate fellows, and been responsible for helping to develop the software ecosystem behind AMD’s heterogeneous computing products and the Heterogeneous System Architecture.
He was a public figure for AMD and active on the software development and evangelism side, frequently presenting the latest HSA tech and announcements for AMD at keynotes and conferences.
While he is not the only person working on the software side of HSA at AMD, Rogers’ role in its development is important. Rogers was a major contributor to the HSA Foundation, helping to initially found it in 2012. He served as the Foundation’s president until he left AMD.
It seems his defection was kept secret, and took place sometime this quarter and did not manage to leak.
According to his LinkedIn profile Phil Rogers is now Nvidia’s “Chief Software Architect – Compute Server” which is similar to what he was doing over at AMD. Nvidia is not a member of the HSA Foundation, but they are currently gearing up for the launch of the Pascal GPU family, which has some features that overlap well with Phil Rogers’ expertise.
Pascal’s NVLink CPU & GPU interconnect would allow tightly coupled heterogonous computing similar to what AMD has been working on. It makes a fair bit of sense for Nvidia to bring over a heterogeneous compute specialist makes a great deal of sense.
Rogers’ departure from AMD will have to be mentioned on the earnings call on the 15th. AMD’s Gregory Stoner will probably replace him. Stoner is AMD’s current Senior Director of Compute Solutions Technology and long-time Vice President of the HSA Foundation.
Source-http://www.thegurureview.net/computing-category/is-amd-losing-top-scientist-to-nvidia.html
IBM and Intel Going GoFlo SOI
Soitec’s CEO and board chairman has raised an eyebrow or two when he said that the iPhone 6s has multiple RF chips built on silicon-on-insulator (SOI) substrates and that Intel and IBM are using the tech for their silicon photonics push.
According to EETimes Paul Boudre, who claimed that SOI is already being used by Apple and Intel even though neither company is broadcasting it. SOI appears to be on track to major market penetration even while the rest of the industry is talking FinFETs.
GlobalFoundries general manager Rutger Wijburg told the SEMICON Europa 2015 that his outfit’s 22-nanometer “22FDX” SOI platform delivers FinFET-like performance but at a much lower power point and at a cost comparable to 28-nanometer planar technologies.
The 300-millimeter $250 million FD-SOI foundry here in the “Silicon Saxony” area of Germany, builds on 20 years of GlobalFoundries’ investments in Europe’s largest semiconductor fabs.
GlobalFoundries said it will extend Moore’s Law by using fully-deleted silicon-on-insulator (FD-SOI) transistors on wafers bought from Soitec.
Many had thought that if GloFlo’s FD-SOI gamble paid off then it would be a while before FinFET would have a serious rival. But Boudre’s claims suggests that SOI is already being used.
Customers like Intel and OEMs supplying fully-deleted silicon-on-insulator (FD-SOI) RF transistors to Apple proves that SOI and Soitec are past the cusp of the growth curve, destined to ramp up exponentially.
The problem for Soitec is no one is really talking about it. Chipzilla is committed to the FinFET, because it is higher performance than FD-SOI, even though it is higher power too.
Boudre said that it was supplying SOI wafers to Intel for other applications that don’t require high-performance. For instance, our wafers are very good for their silicon photonics projects.
Apple is already using SOI for several radio frequency (RF) chips in their front-ends, because they use 20-times less power. The iPhone is still using gallium arsenide (GaAs) for its power amplifier (PA) because it needs the high-power device for good connections, but for other RF front-end chips, and in fact for all the chips that they want to keep “always on,” the lower power consumption of FD-SOI is pushing the smartphone makers to Soitec, Boudre said.
SOI wafers cost three-times as much as bulk silicon but the cost per die is less because of the simplified processing steps including fewer masks.
Normally GPS chips run on 0.8 volts and consume over 20 milliamps, so they must be turned off most of the time. But when they are made with SOI wafers, they can run on 0.4 volts and consume only 1 milliamp. The mobile device to leave them on all the time and new and more accurate location sensing and new kinds of location-based applications can be developed.
What is amusing then is that Intel’s reason for going with FinFETs was that SOI wafers were too expensive but it did find a use for it.
GlobalFoundries’ Saxony fab will offer four varieties of its 22FDX process.
FDX-ulp for the mainstream and low-cost smartphone market. This will use body-biasing to beat FinFETs on power, but equal them in performance.
FDX-uhp for networking applications using analogue integration to match FinFETs while minimizing energy consumption
FDX-ull for ultra-low power required by wearables and Internet of Things applications. This will have a 1 picoamp per micron leakage
DDX-rfa for radio frequency (RF) analogue applications delivering 50 percent lower power and reduced system costs for LTE-A cellular transceivers, high-order multiple-input/multiple-output (MIMO) WiFi combo chips and millimeter wave radar.
Courtesy-http://www.thegurureview.net/computing-category/ibm-and-intel-going-goflo-soi.html
Can Sumsung Compete With Intel?
Samsung is not doing that well in smartphones. To be fair, no one is, but Samsung has the ability to become something much more interesting – it could replace AMD as Intel’s rival.
Actually AMD is pretty cheap right now and if it was not for the pesky arrangement that prevents AMD’s buyer getting its x86 technology then it would have been snapped up a while ago. But with, or without AMD, Samsung could still make a good fist of chipmaking if it put its mind to it. At the moment its chipmaking efforts are one of the better things on its balance sheet.
Its high-margin semiconductor business is more than making up for the shortfall in smartphones. Selling chips to rivals would be more lucrative if they were not spinning their own mobile business. The products it have are worth $11.7 billion this year, more than half the company’s total.
Growing demand for chips and thin-film displays is probably the main reason that Samsung now expects operating profit to have reached $6.3 billion. After applying Samsung’s 16 percent corporate tax rate, its chip division is likely to bring in net income of slightly less than $10 billion.
To put this figure into perspective Intel expects to earn $10.5 billion in this year. Samsung is also sitting on a $48 billion net cash pile. Samsung could see its handset and consumer electronics business as a sideline and just focus on bumping off Intel.
The two sides of such a war would be fascinating. Intel has its roots in the PC chip market which is still suffering while Samsung is based in the mobile chip market which is growing. Intel has had no luck crossing into the mobile market, but Samsung could start looking at server and PC chips.
AMD is still dying and unable to offer Intel any challenge but there is a large market for those PC users who do not want to buy Intel. What Samsung should have done is use its huge cash pile to buy its way into the PC market. It might have done so with the IBM tech which went to Lenovo. It is still not out of the running on that front. Lenovo might be happy to sell IBM tech to Samsung.
Another scenario is that it might try to buy an x86 licence from Intel. With AMD dying, Intel is sitting on a huge monopoly for PC technology. It is only a matter of time before an anti-trust suit appears. Intel might think it is worthwhile to get a reliable rival to stop those allegations taking place. Samsung would be a dangerous rival, but it would take a while before it got itself established. Intel might do well to consider it. Of course Samsung might buy AMD which could sweeten that deal for Intel.
Samsung could try adapting its mobile chip technology for the PC/server market – it has the money to do it. Then it has a huge job marketing itself as the new Intel.
Source-http://www.thegurureview.net/computing-category/can-samsung-compete-with-intel-in-the-x86-chip-space.html
MediaTek Building Ecosystem To Power IoT
Comments Off on MediaTek Building Ecosystem To Power IoT
MediaTek is quietly building an ecosystem to drive IoT strategy to push its System on Chip shipments across multiple devices.
The fabless chipmaker is signing partnerships with Amazon, Tinitell, Apple, and People Power.
MediaTek is starting to come out of the shadows in the West with its SoC designs. It sees the IoT as a way to push more of its chips.
It has put in a tender to buy power management outfit Richtek Technology to expand its leadership in Power Management Integrated Circuits (PMIC) to strengthen its overall capabilities for the IoT business model. The deal is expected to close in Q2 2016.
It has provided funding to People Power, a user engagement company providing apps, cloud and mobile services for IoT to further accelerate its penetration in the IoT market in both the U.S. and China, develop new IoT products based on its Fabrux and Influx software architecture
Release of two software development kits (SDKs) for Apple HomeKit, the framework in iOS 8 for communicating with and controlling connected accessories in a user’s home.
This is on top of its partnership with Amazon for the latest devices – Amazon Fire TV is powered by MediaTek’s MT8173, a 64-bit quad-core processor and the world’s first multimedia SoC with ARM’s Cortex-A72 cores; Fire HD 8 and Fire HD 10 tablets powered by MT8135, an up to 1.5 GHz quad-core processor, resulting in a fast and fluid user interface, and smooth running HD videos and high frame-rate games.
Chief Marketing Officer, Johan Lodenius said the company’s cunning plan was to innvovate widely available technology that provides integrated connectivity, while investing in and nurturing developers and the maker community to deliver practical yet innovative solutions.
Source-http://www.thegurureview.net/computing-category/mediatek-building-ecosystem-to-power-iot.html
Is Electricity In TSMC’s Future?
Contract chip-maker Taiwan Semiconductor Manufacturing Company (TSMC) is thinking of generating electricity in-house.
The cunning plan is to install electric generating equipment at its factories or even building its own power plant.
Apparently, the company’s electricity bill will go up by 50 per cent over the next ten years as it moves to more-advanced technologies.
Taiwan is already facing power shortage problems and TSMC is worried that its plans could be stuffed up.
TSMC has asked Taiwan’s Ministry of Economic Affairs (MOEA) and government-owned Taiwan Power Company (Taipower) about the feasibility of building its own power generators and related regulatory matters.
According to Digitimes companies can set up power generating equipment for use at their own factory sites, but the law has to be revised to allow TSMC to build its own power plant.
TSMC previously pointed out that it does not necessarily need nuclear power unless there is an alternative. We really hope that quote does not mean that TSMC is considering going nuclear.
Source-http://www.thegurureview.net/computing-category/is-electricity-in-tsmcs-future.html
Both AMD And nVidia Preparing For 14nm
Comments Off on Both AMD And nVidia Preparing For 14nm
AMD and Nvidia both appear to be certain to get their “14 nm” out next year.
According to TweakTown Nvidia is apparently dotting the “I” and working out where to put in the semi-colons for its Pascal GPU using TSMC’s 16nm FinFet node. AMD rumored has been wining and dining its old chums at GlobalFoundries to use its 14nm process for its Greenland GPU.
Although these sound like different technologies the “14nm and 16nm” is difference how you measure a transistor. The outcome of both 14 and 16 should be a fairly same sized transistor with similar power features. TSMC calls its process 16nm FinFet, while Samsung and GloFo insist on calling it 14nm FinFet.
The dark satanic rumor mill suggests that the Greenland GPU, which has new Arctic Islands family micro-architecture, will have HBM2 memory. There will be up to 32GB of memory available for enthusiast and professional users. Consumer-oriented cards will have eight to 16GB of HBM2 memory. It will also have a new ISA (instruction set architecture).
It makes sense, AMD moved to HBM with its Fury line this year. Nvidia is expected to follow suit in 2016 with cards offering up to 32GB HBM2 as well.
Both Nvidia and AMD are drawn to FinFET which offers 90 percent more density than 28nm. Both will boost the transistors on offer with their next-generation GPUs, with 17 to 18 billion transistors currently being rumored.
Source- http://www.thegurureview.net/computing-category/are-both-amd-and-nvidia-readying-to-release-a-14nm-gpu.html
AMD’s Quantum Has Intel Inside
AMD’s Project Quantum PC system, with graphics powered by two of the new Fiji GPUs may have got the pundits moist but it has been discovered that the beast has Intel inside
KitGuru confirmed that the powerful tiny system, as shown at AMD’s own event, was based upon an Asrock Z97E-ITX/ac motherboard with an Intel Core i7-4790K ‘Devil’s Canyon’ processor.
Now AMD has made a statement to explain why it chose to employ a CPU from one of its competitor in what is a flagship pioneering gaming PC.
It told Tom’s Hardware that users wanted the Devil’s Canyon chip in the Project Quantum machine.
Customers “want to pick and choose the balance of components that they want,” and the machine shown off at the E3 was considered to be the height of tech sexiness right now.
AMD said Quantum PCs will feature both AMD and Intel CPUs to address the entire market, but did you see that nice Radeon Fury… think about that right now.
IT is going to be ages before we see the first Project Quantum PCs will be released and the CPU options might change. We would have thought that AMD might want to put its FinFET process ZEN CPUs in Project Quantum with up to 16 cores and 32 threads. We will not see that until next year.