AMD Headed To The Facial Recognition Space
Comments Off on AMD Headed To The Facial Recognition Space
AMD has developed facial recognition technology to enable users to organize and search video clips based on the people featured in them.
AMD executive Richard Gayle demonstrated to Tom’s Guide how AMD Content Manager, uses facial recognition to browse through a group of local videos to find specific faces.
There is an index that displays the people’s faces that have been detected throughout the video clips.
The user can edit the names of the people as well as add keyword tags to help improve future searches for specific people.
For instance, if you are searching for videos that feature one person, you can click on his or her respective face to pull up the corresponding videos.
Additionally, if you want to narrow a search to a specific person combined with a keyword tag, you can drag the face icon and click on the desired keyword.
Once you click on the video you wish to view, a player appears in the right windowpane, along with a timeline displayed at the bottom with a list of all the people who appear in the video.
The timeline is separated into various coloured boxes to mark the exact moment in the video when each person first appears on screen, so you do not have to watch the entire video to see the bit you want.
The application also has facial recognition capabilities that allow users to do some basic editing, such as compiling a single montage video of any individual or individuals.
While this is pretty good technology, it probably does not have any major use yet on its own.
Gayle said it is unlikely that AMD will release Content Manager in its current form but will license it to OEMs that are able to rebrand the application before offering it on their respective systems.
He claimed that only AMD processors have sufficient power to operate the application, because of the processor’s ability to have the CPU, GPU and memory controller work closely together.
AMD’s Fiji GPU Goes High Bandwidth
New evidence coming from two LinkedIn profiles of AMD employees suggest that AMD’s upcoming Radeon R9 380X graphics card which is expected to be based on the Fiji GPU will actually use High-Bandwidth Memory.
Spotted by a member of 3D Center forums, the two LinkedIn profiles mention both the R9 380X by name as well as describe it as the world’s firts 300W 2.5D discrete GPU SoC using stacked die High-Bandwidth Memory and silicon interposer. While the source of the leak is quite strange, these are more reliable than just rumors.
The first in line is the profile of Ilana Shternshain, an ASIC Physical Design Engineer, which has been behind the Playstation 4 SoC, Radeon R9 290X and R9 380X, which is described as the “largest in ‘King of the hill’ line of products.”
The second LinkedIn profile is the one from AMD’s System Architect Manager, Linglan Zhang, which was involved in developing “the world’s first 300W 2.5D discrete GPU SOC using stacked die High Bandwidth Memory and silicon interposer.”
Earlier rumors suggest that AMD might launch the new graphics cards early this year as the company is under heavy pressure from Nvidia’s recently released, as well as the upcoming, Maxwell-based graphics cards.
Samsung Finally Starts 14nm FinFET
A company insider has spilled the beans in Korea, claiming that Samsung has started Apple A9 production in 14nm FinFET.
The A9 is the next generation SoC for Apple iPhone and iPad products and it is manufactured on the Samsung – GlobalFoundries 14nm FinFET manufacturing process. In the other news, Samsung’s Ki-nam, president of the company’s semiconductor business and head of System LSI business has confirmed that the company started production of 14-nanometre FinFET chips.
The report mentions Austin as a possible site for Apple products but we wonder if the GlobalFoundries Fab 8 in New York State could become one of the partners for the 14nm FinFET manufacturing. Samsung didn’t officially reveal the client for the 14nm FinFET, but Apple is the most obvious candidate, while we expect to see 14 / 16nm FinFET graphics chips from AMD and Nvidia but most likely in the latter half of 2015 at best.
Qualcomm is likely to announce new LTE modem based on 14nm FinFET and the flagship SoC Snapdragon 810 is a 20nm chip. Qualcomm is manufacturing its 810 chips as we speak to meet demand for flagship Android phones coming in Q1 2015. Flagship Samsung, HTC and LG phones among others are likely to use Snapdragon 810 as a replacement for this year’s Snapdragon 801, a high end chip that ended up in millions of high-end phones.
Samsung / GlobalFoundries14nm FinFET process is 15 percent smaller, 20 percent faster, and 35 percent more power efficient compared to 20nm processors. This definitely sounds exiting and will bring more performance into phones, tablets, GPUs and will significantly decrease power consumption. The move from 28nm is long overdue.
We believe that Qualcomm’s LTE modem might be the first chip to officially come with this manufacturing process and Apple will probably take most of the 14nm production for an update in its tablets and phones scheduled for 2015.
Amazon Web Services Goes Zocalo
Amazon Web Services (AWS) has announced two much-needed boosts to its fledgling Zocalo productivity platform, making the service mobile and allowing for file capacities of up to 5TB.
The service, which is designed to do what Drive does for Google and what Office 365 does for software rental, has gained mobile apps for the first time as Zocalo appears on the Google Play store and Apple App Store.
Amazon also mentions availability on the Kindle store, but we’re not sure about that bit. We assume it means the Amazon App Store for Fire tablet users.
The AWS blog says that the apps allow the user to “work offline, make comments, and securely share documents while you are in the air or on the go.”
A second announcement brings Zocalo into line with the AWS S3 storage on which it is built. Users will receive an update to their Zocalo sync client which will enable file capacities up to 5TB, the same maximum allowed by the Amazon S3 cloud.
To facilitate this, multi-part uploads will allow users to carry on an upload from where it was after a break, deliberate or accidental.
Zocalo was launched in July as the fight for enterprise storage productivity hots up. The service can be trialled for 30 days free of charge, offering 200GB each for up to 50 users.
Rival services from companies including the aforementioned Microsoft and Google, as well as Dropbox and Box, coupled with aggressive price cuts across the sector, have led to burgeoning wars for the hearts and minds of IT managers as Microsoft’s Office monopoly begins to wane.
Can Qualcomm Comptete With Intel?
Qualcomm has confirmed that it will branch out from offering its Snapdragon mobile chips and will soon launch a line of server processors.
The firm’s CEO, Steve Mollenkopf, has remained tight lipped about the plans so far but, according to The Wall Street Journal, said during a meeting with financial analysts in New York on Wednesday that the company is working on chips for the data centre.
There’s no timing yet, either, although Mollenkopf said that his firm is currently “engaged with customers”.
Qualcomm is already the world leader in ARM chips for smartphones, and we assume that the company will develop server chips based on ARM’s 64-bit ARMv8-A architecture as rivals such as AMD have done.
The move will place Qualcomm in competition with chip giant Intel, which is currently one of the biggest server chip makers.
Qualcomm announced last month that it had acquired Cambridge-based chipmaker CSR for a hefty $2.5bn (£1.6bn), as the company looks to push further into the Internet of Things (IoT).
The buyout, which comes two months after CSR rejected a takeover bid from Microchip Technology, will see Qualcomm using the British company to push further into the IoT, automotive and mobile communications markets.
CSR rejected an initial bid from Microchip, but reports claim that the firm has until 5pm UK time today to make a better offer.
However, CSR’s board of directors has unanimously accepted Qualcomm’s offer of 900p a share. The closing price at the time of the offer was 660p.
Amazon Intel Zeon Inside
Amazon has become the latest vendor to commission a customized Xeon chip from Intel to meet its exact compute requirements, in this case powering new high-performance C4 virtual machine instances on the AWS cloud computing platform.
Amazon announced at the firm’s AWS re:Invent conference in Las Vegas that the latest generation of compute-optimized Amazon Elastic Compute Cloud (EC2) virtual machine instances offer up to 36 virtual CPUs and 60GB of memory.
“These instances are designed to deliver the highest level of processor performance on EC2. If you’ve got the workload, we’ve got the instance,” said AWS chief evangelist Jeff Barr, detailing the new instances on the AWS blog.
The instances are powered by a custom version of Intel’s latest Xeon E5 v3 processor family, identified by Amazon as the Xeon E5-2666 v3. This runs at a base speed of 2.9GHz, and can achieve clock speeds as high as 3.5GHz with Turbo boost.
Amazon is not the first company to commission a customized processor from Intel. Earlier this year, Oracle unveiled new Sun Server X4-4 and Sun Server X4-8 systems with a custom Xeon E7 v2 processor.
The processor is capable of dynamically switching core count, clock frequency and power consumption without the need for a system level reboot, in order to deliver an elastic compute capability that adapts to the demands of the workload.
However, these are just the vendors that have gone public; Intel claims it is delivering over 35 customized versions of the Intel Xeon E5 v3 processor family to various customers.
This is an area the chipmaker seems to be keen on pursuing, especially with companies like cloud service providers that purchase a great many chips.
“We’re really excited to be working with Amazon. Amazon’s platform is the landing zone for a lot of new software development and it’s really exciting to partner with those guys on a SKU that really meets their needs,” said Dave Hill, senior systems engineer in Intel’s Datacenter Group.
Also at AWS re:Invent, Amazon announced the Amazon EC2 Container Service, adding support for Docker on its cloud platform.
Currently available as a preview, the EC2 Container Service is designed to make it easy to run and manage distributed applications on AWS using containers.
Customers will be able to start, stop and manage thousands of containers in seconds, scaling from one container to hundreds of thousands across a managed cluster of Amazon EC2 instances, the firm said.
TSMC’s FinFet Coming In 2015?
TSMC has announced that it will begin volume production of 16nm FinFET products in the second half of 2015, in late Q2 or early Q3.
For consumers, this means products based on TSMC 16nm FinFET silicon should appear in late 2015 and early 2016. The first TSMC 16nm FinFET product was announced a few weeks ago.
TSMC executive CC Wei said sales of 16nm FinFET products should account for 7-9% of the foundry’s total revenue in Q4 2015. The company already has more than 60 clients lined up for the new process and it expects 16nm FinFET to be its fastest growing process ever.
Although TSMC is not talking about the actual clients, we already know the roster looks like the who’s who of tech, with Qualcomm, AMD, Nvidia and Apple on board.
This also means the 20nm node will have a limited shelf life. The first 20nm products are rolling out as we speak, but the transition is slow and if TSMC sticks to its schedule, 20nm will be its top node for roughly a year, giving it much less time on top than earlier 28nm and 40nm nodes.
The road to 10nm
TSMC’s 16nm FinFET, or 16FinFET, is just part of the story. The company hopes to tape out the first 10nm products in 2015, but there is no clear timeframe yet.
Volume production of 10nm products is slated for 2016, most likely late 2016. As transitions speed up, TSMC capex will go up. The company expects to invest more than $10bn in 2015, up from $9.6bn this year.
TSMC expects global smartphone shipments to reach 1.5bn units next year, up 19 percent year-on-year. Needless to say, TSMC silicon will power the majority of them.
Intel Sampling Xeon D 14nm
Intel has announced that it is sampling its Xeon D 14nm processor family, a system on chip (SoC) optimized to deliver Intel Xeon processor performance for hyperscale workloads.
Announcing the news on stage during a keynote at IDF in San Francisco, Intel SVP and GM of the Data Centre Group, Diane Bryant, said that the Intel Xeon processor D, which initially was announced in June, will be based on 14nm process technology and be aimed at mid-range communications.
“We’re pleased to announce that we’re sampling the third generation of the high density [data center system on a chip] product line, but this one is actually based on the Xeon processor, called Xeon D,” Bryant announced. “It’s 14nm and the power levels go down to as low as 15 Watts, so very high density and high performance.”
Intel believes that its Xeon D will serve the needs of high density, optimized servers as that market develops, and for networking it will serve mid-range routers as well as other network appliances, while it will also serve entry and mid-range storage. So, Intel claimed, you will get all of the benefits of Xeon-class reliability and performance, but you will also get a very small footprint and high integration of SoC capability.
This first generation Xeon D chip will also showcase high levels of I/O integrations, including 10Gb Ethernet, and will scale Intel Xeon processor performance, features and reliability to lower power design points, according to Intel.
The Intel Xeon processor D product family will also include data centre processor features such as error correcting code (ECC).
“With high levels of I/O integration and energy efficiency, we expect the Intel Xeon processor D product family to deliver very competitive TCO to our customers,” Bryant said. “The Intel Xeon processor D product family will also be targeted toward hyperscale storage for cloud and mid-range communications market.”
Bryant said that the product is not yet available, but it is being sampled, and the firm will release more details later this year.
This announcement comes just days after Intel launched its Xeon E5 v2 processor family for servers and workstations.
Vendors Testing New Xeon Processors
Comments Off on Vendors Testing New Xeon Processors
Intel is cooking up a hot batch of Xeon processors for servers and workstations, and system vendors have already designed systems that are ready and raring to go as soon as the chips become available.
Boston is one of the companies doing just that, and we know this because it gave us an exclusive peek into its labs to show off what these upgraded systems will look like. While we can’t share any details about the new chips involved yet, we can preview the systems they will appear in, which are awaiting shipment as soon as Intel gives the nod.
Based on chassis designs from Supermicro, with which Boston has a close relationship, the systems comprise custom-built solutions for specific user requirements.
On the workstation side, Boston is readying a mid-range and a high-end system with the new Intel Xeon chips, both based on two-socket Xeon E5-2600v3 rather than the single socket E5-1600v3 versions.
There’s also the mid-range Venom 2301-12T, which comes in a mid-tower chassis and ships with an Nvidia Quadro K4000 card for graphics acceleration. It comes with 64GB of memory and a 240GB SSD as a boot device, plus two 1TB Sata drives configured as a Raid array for data storage.
For extra performance, Boston has also prepared the Venom 2401-12T, which will ship with faster Xeon processors, 128GB of memory and an Nvidia Quadro K6000 graphics card. This also has a 240GB SSD as a boot drive, with two 2TB drives configured as a Raid array for data storage.
Interestingly, Intel’s new Xeon E5-2600v3 processors are designed to work with 2133MHz DDR4 memory instead of the more usual DDR3 RAM, and as you can see in the picture below, DDR4 DIMM modules have slightly longer connectors towards the middle.
For servers, Boston has prepared a 1U rack-mount “pizza box” system, the Boston Value 360p. This is a two-socket server with twin 10Gbps Ethernet ports, support for 64GB of memory and 12Gbps SAS Raid. It can also be configured with NVM Express (NVMe) SSDs connected to the PCI Express bus rather than a standard drive interface.
Boston also previewed a multi-node rack server, the Quattro 12128-6, which is made up of four separate two-socket servers inside a 2U chassis. Each node has up to 64GB of memory, with 12Gbps SAS Raid storage plus a pair of 400GB SSDs.
Is The EU Going After Qualcomm
Qualcomm faces an antitrust investigation in Europe, even as it seeks to end a probe of its alleged monopoly practices in China.
Reuters reported that Qualcomm is looking for an amicable resolution of an investigation conducted by China’s National Development and Reform Commission (NDRC) over suspicions that it holds a monopoly in the Chinese telecoms market.
The investigation involves allegations that Qualcomm’s China subsidiary has been overcharging and exploiting its position in the wireless communications sector.
The antitrust probe of Qualcomm has been ongoing since last November, when the firm revealed that it was under investigation by the NDRC, though at the time it said the NDRC had not revealed the substance of the investigation.
In February, the NDRC declared it had received complaints against Qualcomm from the China Communications Industry Association, regarding its market position and patent fees it charged Chinese mobile phone manufacturers.
While the NDRC has ruled that Qualcomm does hold a monopoly in China, it has yet to decide whether the company has abused its position in the market.
Under China’s 2008 anti-monopoly laws, Qualcomm could face high fines, potentially topping $1bn.
In a statement to Reuters, Qualcomm said that it is seeking an amicable conclusion to the investigation. “Qualcomm executives discussed with NDRC officials several topics in an effort to reach a comprehensive resolution. We are continuing to cooperate with NDRC and cannot comment further,” the firm said.
Given that the NDRC is targeting at least another 30 foreign firms with antitrust investigations, including Microsoft and Volkswagen, critics have suggested that the monopoly law is being used to unfairly target overseas firms so that China can protect its native businesses.
Even if the China case is settled Qualcomm is now facing the prospect of a monopoly probe in Europe. Reuters has also reported the company could face a European Commission antitrust investigation following a complaint made four years ago by British software defined modem company Icera, a subsidiary of Nvidia.
Icera alleged that Qualcomm had engaged in anti-competitive behaviour by discouraging customers from doing businesses with Icera through patent related incentives and exclusionary pricing of chipsets.
While it was thought that the allegations had dropped from the European Commission’s agenda, the issue has resurfaced. It could even be fast-tracked following a similar monopoly case and subsequent fine made against Intel, which cost the company €1.1bn.
As yet, no official investigation has been opened by the European Comission. Qualcomm was contacted for a statement on both antitrust investigations, but the company has not yet responded.
Patents and their subsequent enforcement tend to play a major part in the technology industry as companies vie for market shares or state their supremacy. Qualcomm is no different, with the company having snapped up 2,400 patents from HP, including one for the now-defunct Palm technology, earlier this year.